Fluorine-containing compounds comprise 20 to 30 percent of all commercial drugs, and the proportion of fluorinated pharmaceuticals is rapidly growing. While magic angle spinning (MAS) NMR spectroscopy is a popular technique for analysis of solid pharmaceutical compounds, fluorine has been underutilized as a structural probe so far. Here, we report a fast (40-60 kHz) MAS ^(19)F NMR approach for structural characterization of fluorine-containing crystalline pharmaceutical compounds at natural...
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes
Publication date: August 2018
Source: Journal of Magnetic Resonance, Volume 293
Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier
Abstract
nmrlearner
Journal club
0
07-06-2018 09:40 AM
[NMR paper] Setting the magic angle for fast magic-angle spinning probes
Setting the magic angle for fast magic-angle spinning probes
Publication date: Available online 15 June 2018
Source:Journal of Magnetic Resonance</br>
Author(s): Susanne Penzel, Albert A. Smith, Matthias Ernst, Beat H. Meier</br>
Fast magic-angle spinning, coupled with 1H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1H dimension to directly detect protons, which have a gyromagnetic...
nmrlearner
Journal club
0
06-15-2018 07:18 PM
[NMR paper] Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F-19F Distances in Proteins and Pharmaceutical Compounds.
Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F-19F Distances in Proteins and Pharmaceutical Compounds.
Fast Magic-Angle-Spinning 19F Spin Exchange NMR for Determining Nanometer 19F-19F Distances in Proteins and Pharmaceutical Compounds.
J Phys Chem B. 2018 Feb 27;:
Authors: Roos M, Wang T, Shcherbakov AA, Hong M
Abstract
Internuclear distances measured using NMR provide crucial constraints of three-dimensional structures, but are often restricted to about 5 Å due to the weakness of nuclear-spin...
nmrlearner
Journal club
0
02-28-2018 03:32 PM
HighResolution Structural Characterization of A?42 AmyloidFibrils by Magic Angle Spinning NMR
HighResolution Structural Characterization of A?42 AmyloidFibrils by Magic Angle Spinning NMR
Michael T. Colvin, Robert Silvers, Birgitta Frohm, Yongchao Su, Sara Linse and Robert G. Griffin
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b03997/20150604/images/medium/ja-2015-03997u_0010.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.5b03997
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/KbGlyz-E4EI
nmrlearner
Journal club
0
06-05-2015 01:10 AM
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins
Abstract
Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of 1H, 13C, and 15N resonances and structural analysis in fully protonated proteins. We demonstrate that 13C detected 3D experiments are highly efficient and permit assignments of the majority of backbone resonances, as shown in an 89-residue dynein light chain 8, LC8 protein. With these experiments, we...
nmrlearner
Journal club
0
11-11-2014 11:57 AM
[NMR paper] Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
Related Articles Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins.
J Biomol NMR. 2014 Nov 9;
Authors: Guo C, Hou G, Lu X, O'Hare B, Struppe J, Polenova T
Abstract
Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of (1)H, (13)C, and (15)N...
nmrlearner
Journal club
0
11-10-2014 10:59 PM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100077x/aop/images/medium/bi-2010-00077x_0004.gif
Biochemistry
DOI: 10.1021/bi100077x
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/jvIszRWKX60
More...
nmrlearner
Journal club
0
10-14-2010 04:59 AM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Biochemistry. 2010 Aug 9;
Authors: van der Wel PC, Lewandowski JR, Griffin RG
Various human diseases feature the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental...