Authors: Walinda E, Morimoto D, Shirakawa M, Sugase K
Abstract
Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F 3, F 4 respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F 1 F 2, at a time and records the resulting F 3 F 4 correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F 1 F 2 ("bright regions") are sampled. F 1 F 2 selection is achieved by Hartmann-Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F 1 F 2-selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein-protein interactions and allosteric modulation of protein structure.
PMID: 28474302 [PubMed - as supplied by publisher]
F 1 F 2 -selective NMR spectroscopy
F 1 F 2 -selective NMR spectroscopy
Abstract
Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F ...
nmrlearner
Journal club
0
05-04-2017 07:19 PM
[NMR paper] Amino Acid Selective Unlabeling in Protein NMR Spectroscopy.
Amino Acid Selective Unlabeling in Protein NMR Spectroscopy.
Related Articles Amino Acid Selective Unlabeling in Protein NMR Spectroscopy.
Methods Enzymol. 2015;565:167-189
Authors: Prasanna C, Dubey A, Atreya HS
Abstract
Three-dimensional structure determination of proteins by NMR requires the acquisition of multidimensional spectra followed by assignment of chemical shifts to the respective nuclei. In order to speed up this process, resonances corresponding to individual amino acid types are often selectively identified...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
[NMR images] Selective Fluorine NMR Spectroscopy :: University of Southampton
http://www.southampton.ac.uk/scas/images/nmr_images/spectra/19f_cosy.jpg
www.southampton.ac.uk
19/07/2013 7:44:31 AM GMT
Selective Fluorine NMR Spectroscopy :: University of Southampton
More...
nmrlearner
NMR pictures
0
07-19-2013 07:43 AM
[Question from NMRWiki Q&A forum] How to perform non-selective spectroscopy with an imager?
How to perform non-selective spectroscopy with an imager?
Greetings NMR Wiki,
I am using a Bruker Biospec 24/30, (100 MHz 1H, DBX, Pv3, XWIN), equiped with a 36mm litz coil probe, to perform basic T1 & T2 measurements as well as DOSY. The sample is water. Images look great, basic spectroscopy has a systematic error.
My prior NMR experience is in chemistry on solid state systems using the chemagnetics CMX II type spectrometer. The Bruker instrument has been sending pulses for 6 months after I made a few repairs and was dormant (cold but not pulsing) for 5 years prior.
Is anyone...
nmrlearner
News from other NMR forums
0
03-15-2012 06:10 AM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
J Magn Reson. 2011 Mar 17;
Authors: Traaseth NJ, Veglia G
We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner
Journal club
0
04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br>
Nathaniel J., Traaseth , Gianluigi, Veglia</br>
We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner
Journal club
0
03-18-2011 06:43 AM
[NMR paper] Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
Related Articles Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
J Am Chem Soc. 2002 Mar 20;124(11):2446-7
Authors: Weigelt J, van Dongen M, Uppenberg J, Schultz J, Wikström M
A new method for site-selective screening by NMR is presented. The core of the new method is the dual amino acid sequence specific labeling technique. Amino acid X is labeled with (13)C and amino acid Y is labeled with (15)N. Provided only one XY pair occurs in the...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle
Abstract Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR...