Related ArticlesExpression of doubly labeled Saccharomyces cerevisiae iso-1 ferricytochrome c and (1)H, (13)C and (15)N chemical shift assignments by multidimensional NMR.
FEBS Lett. 2000 Sep 29;482(1-2):25-30
Authors: Szabo CM, Sanders LK, Le HC, Chien EY, Oldfield E
We have expressed [U-(13)C,(15)N]-labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11 mg/l of growth medium. Nuclear magnetic resonance (NMR) studies were conducted on the Fe(3+) form of the protein. We report herein chemical shift assignments for amide (1)H and (15)N, (13)C(omicron), (13)C(alpha), (13)C(beta), (1)H(alpha) and (1)H(beta) resonances based upon a series of three-dimensional NMR experiments: HNCA, HN(CO)CA, HNCO, HN(CA)CO, HNCACB, HCA(CO)N, HCCH-TOCSY and HBHA(CBCA)NH. An investigation of the chemical shifts of the threonine residues was also made by using density functional theory in order to help solve discrepancies between (15)N chemical shift assignments reported in this study and those reported previously.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
J Proteome Res. 2010 Dec 3;9(12):6729-39
Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD
Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner
Journal club
0
05-25-2011 07:01 PM
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
J Bioenerg Biomembr. 2011 Mar 12;
Authors: Rishikesan S, Thaker YR, Grüber G
The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner
Journal club
0
03-15-2011 04:06 PM
[NMR paper] Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Related Articles Biosynthesis and NMR analysis of a 73-residue domain of a Saccharomyces cerevisiae G protein-coupled receptor.
Biochemistry. 2005 Sep 6;44(35):11795-810
Authors: Estephan R, Englander J, Arshava B, Samples KL, Becker JM, Naider F
The yeast Saccharomyces cerevisiae alpha-factor pheromone receptor (Ste2p) was used as a model G protein-coupled receptor (GPCR). A 73-mer multidomain fragment of Ste2p (residues 267-339)...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged he
The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy.
Related Articles The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy.
Nucleic Acids Res. 2003 Dec 15;31(24):7199-207
Authors: Ono K, Kusano O, Shimotakahara S, Shimizu M, Yamazaki T, Shindo H
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypep
NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: application to the human prion protein hPrP(23-230).
Related Articles NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: application to the human prion protein hPrP(23-230).
J Biomol NMR. 2000 Feb;16(2):127-38
Authors: Liu A, Riek R, Wider G, von Schroetter C, Zahn R, Wüthrich K
A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15N,...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a
NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
Related Articles NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
J Mol Biol. 1999 Aug 20;291(3):661-9
Authors: Evans SP, Bycroft M
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] NMR with 13C, 15N-doubly-labeled DNA: the Antennapedia homeodomain complex with a 14-
NMR with 13C, 15N-doubly-labeled DNA: the Antennapedia homeodomain complex with a 14-mer DNA duplex.
NMR with 13C, 15N-doubly-labeled DNA: the Antennapedia homeodomain complex with a 14-mer DNA duplex.
J Biomol NMR. 1998 Jul;12(1):25-37
Authors: Fernández C, Szyperski T, Ono A, Iwai H, Tate S, Kainosho M, Wüthrich K
Nearly complete 1H, 13C and 15N NMR assignments have been obtained for a doubly labeled 14-base pair DNA duplex in solution both in the free state and complexed with the uniformly 15N-labeled Antennapedia homeodomain. The DNA was...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] The formation of protein complexes between ferricytochrome b5 and ferricytochrome c s
The formation of protein complexes between ferricytochrome b5 and ferricytochrome c studied using high-resolution 1H-NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The formation of protein complexes between ferricytochrome b5 and ferricytochrome c studied using high-resolution 1H-NMR spectroscopy.
Eur J Biochem. 1990 Sep 24;192(3):715-21
Authors: Whitford D, Concar DW, Veitch NC, Williams RJ
The association of...