Related ArticlesExploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies.
Subcell Biochem. 2015;72:261-278
Authors: Roche J, Dellarole M, Royer CA, Roumestand C
Abstract
Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of progress has been made in recent years towards this goal, a number of important questions remain. These include characterizing the structural, thermodynamic and dynamic properties of the barriers between conformational states on the protein energy landscape, understanding the sequence dependence of folding cooperativity, defining more clearly the role of solvation in controlling protein stability and dynamics and probing the high energy thermodynamic states in the native state basin and their role in misfolding and aggregation. Fundamental to the elucidation of these questions is a complete thermodynamic parameterization of protein folding determinants. In this chapter, we describe the use of high-pressure coupled to Nuclear Magnetic Resonance (NMR) spectroscopy to reveal unprecedented details on the folding energy landscape of proteins.
PMID: 26174386 [PubMed - as supplied by publisher]
[NMR paper] Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme.
Biophys J. 2015 Jan 6;108(1):133-145
Authors: Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FA, Kitahara R
Abstract
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins...
nmrlearner
Journal club
0
01-08-2015 01:29 PM
[NMR paper] Solution and high-pressure NMR studies of the structure, dynamics and stability of the cross-reactive allergenic cod parvalbumin Gad m 1.
Solution and high-pressure NMR studies of the structure, dynamics and stability of the cross-reactive allergenic cod parvalbumin Gad m 1.
Related Articles Solution and high-pressure NMR studies of the structure, dynamics and stability of the cross-reactive allergenic cod parvalbumin Gad m 1.
Proteins. 2014 Aug 12;
Authors: Moraes AH, Ackerbauer D, Kostadinova M, Bublin M, de Oliveira GA, Ferreira F, Almeida FC, Breiteneder H, Valente AP
Abstract
Beta-parvalbumins from different fish species have been identified as the main...
[NMR paper] Kinase in Motion: Insights into the Dynamic Nature of p38? by High-Pressure NMR Spectroscopic Studies.
Kinase in Motion: Insights into the Dynamic Nature of p38? by High-Pressure NMR Spectroscopic Studies.
Kinase in Motion: Insights into the Dynamic Nature of p38? by High-Pressure NMR Spectroscopic Studies.
Chembiochem. 2013 Jul 10;
Authors: Nielsen G, Jonker HR, Vajpai N, Grzesiek S, Schwalbe H
Abstract
Protein kinases are highly dynamic and complex molecules. Here we present high-pressure and relaxation studies of the activated p38? mitogen-activated protein kinase (MAPK). p38? plays a central role in inflammatory diseases such as...
nmrlearner
Journal club
0
07-12-2013 06:01 PM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Chembiochem. 2013 Jun 28;
Authors: Roche J, Ying J, Maltsev AS, Bax A
Abstract
The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner
Journal club
0
07-03-2013 01:46 PM
[NMR paper] High-pressure NMR spectroscopy for characterizing folding intermediates and denatured
High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
Related Articles High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.
Methods. 2004 Sep;34(1):133-43
Authors: Kamatari YO, Kitahara R, Yamada H, Yokoyama S, Akasaka K
Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic c
Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
Related Articles Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
Biochemistry. 2002 Oct 1;41(39):11670-80
Authors: Schuler B, Kremer W, Kalbitzer HR, Jaenicke R
We used (19)F NMR to extend the temperature range accessible to detailed kinetic and equilibrium studies of a hyperthermophilic protein. Employing an...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H
Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H NMR assignments of its pH-denatured state.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H NMR assignments of its pH-denatured state.
Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9412-6
Authors: Arcus VL, Vuilleumier S, Freund SM, Bycroft M, Fersht AR
The structures of the major folding...