Related ArticlesExploring the calcium-binding site in photosystem II membranes by solid-state (113)Cd NMR.
Biochemistry. 2000 Jun 13;39(23):6751-5
Authors: Matysik J, Alia A, Nachtegaal G, van Gorkom HJ, Hoff AJ, de Groot HJ
Calcium (Ca(2+)) is an essential cofactor for photosynthetic oxygen evolution. Although the involvement of Ca(2+) at the oxidizing side of photosystem II of plants has been known for a long time, its ligand interactions and mode of action have remained unclear. In the study presented here, (113)Cd magic-angle spinning solid-state NMR spectroscopy is used to probe the Ca(2+)-binding site in the water-oxidizing complex of (113)Cd(2+)-substituted PS2. A single NMR signal 142 ppm downfield from Cd(ClO(4))(2).2H(2)O was recorded from Cd(2+) present at the Ca(2+)-binding site. The anisotropy of the signal is small, as indicated by the absence of spinning side bands. The signal intensity is at its maximum at a temperature of -60 degrees C. The line width of the proton signal in a WISE (wide-line separation) two-dimensional (1)H-(113)Cd NMR experiment demonstrates that the signal arises from Cd(2+) in a solid and magnetically undisturbed environment. The chemical shift, the small anisotropy, and the narrow line of the (113)Cd NMR signal provide convincing evidence for a 6-fold coordination, which is achieved partially by oxygen and partially by nitrogen or chlorine atoms in otherwise a symmetric octahedral environment. The absence of a (113)Cd signal below -70 degrees C suggests that the Ca(2+)-binding site is close enough to the tetramanganese cluster to be affected by its electron spin state. To our knowledge, this is the first report for the application of solid-state NMR in the study of the membrane-bound PS2 protein complex.
Solid-State (19)F-NMR of Peptides in Native Membranes.
Solid-State (19)F-NMR of Peptides in Native Membranes.
Solid-State (19)F-NMR of Peptides in Native Membranes.
Top Curr Chem. 2011 May 20;
Authors: Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS
To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR,...
nmrlearner
Journal club
0
05-21-2011 07:51 PM
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions.
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions.
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions.
BMC Struct Biol. 2011 May 12;11(1):24
Authors: Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA
ABSTRACT: BACKGROUND: Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural...
nmrlearner
Journal club
0
05-17-2011 06:21 PM
Exploring NMR ensembles of calcium binding proteins: perspectives to design ... - 7thSpace Interactive (press release)
Exploring NMR ensembles of calcium binding proteins: perspectives to design ... - 7thSpace Interactive (press release)
<img alt="" height="1" width="1" />
Exploring NMR ensembles of calcium binding proteins: perspectives to design ...
7thSpace Interactive (press release)
We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein ...
Read here
nmrlearner
Online News
0
05-13-2011 07:41 AM
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II.
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II.
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II.
J Am Chem Soc. 2010 Dec 1;132(47):16727-9
Authors: Ellis PD, Sears JA, Yang P, Dupuis M, Boron TT, Pecoraro VL, Stich TA, Britt RD, Lipton AS
We have examined the antiferromagneticly coupled bis(?-oxo)dimanganese(IV) complex (1) with (55)Mn solid-state NMR at cryogenic temperatures and...
nmrlearner
Journal club
0
03-13-2011 04:01 AM
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations.
Eur Biophys J. 2011 Jan 28;
Authors: Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state...
nmrlearner
Journal club
0
01-29-2011 12:35 PM
[NMR paper] Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lantha
Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.
Related Articles Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.
Biochem Cell Biol. 1998;76(2-3):443-51
Authors: Prosser RS, Volkov VB, Shiyanovskaya IV
The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Interaction of a type II myosin with biological membranes studied by 2H solid state N
Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
Related Articles Interaction of a type II myosin with biological membranes studied by 2H solid state NMR.
Biochemistry. 1998 Apr 21;37(16):5582-8
Authors: Arêas JA, Gröbner G, Glaubitz C, Watts A
Deuterium nuclear magnetic resonance spectroscopy (2H NMR) has been employed to investigate the interaction of lung type II myosin protein with neutral bilayers containing dimyristoylphosphatidylcholine (DMPC) as the only constituent and mixed bilayers containing...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Determination of the solution structure of a synthetic two-site calcium-binding homod
Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy.
Related Articles Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy.
Biochemistry. 1992 Oct 13;31(40):9572-80
Authors: Shaw GS, Hodges RS, Sykes BD
The solution structure of a 34-residue synthetic calcium-binding peptide from site III of chicken troponin-C has been determined by 1H NMR spectroscopy. In solution and in the presence of calcium...