Related ArticlesExperiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins.
J Phys Chem B. 2013 Sep 17;
Authors: Das BB, Lin EC, Opella SJ
Abstract
Structure determination by solid-state NMR of proteins is rapidly advancing as result of recent developments of samples, experimental methods, and calculations. There are a number of different solid-state NMR approaches that utilize stationary, aligned samples or magic angle spinning of unoriented 'powder' samples, and depending on the sample and the experimental method can emphasize the measurement of distances or angles, ideally both, as sources of structural constraints. Multi-dimensional correlation spectroscopy of low-gamma nuclei such as 15N and 13C is an important step for making resonance assignments and measurements of angular restraints in membrane proteins. However, the efficiency of coherence transfer predominantly depends upon the strength of dipole-dipole interaction, and this can vary from site to site and between sample alignments, for example, during the mixing of 13C and 15N magnetization in stationary aligned and in magic angle spinning samples. Here, we demonstrate that the efficiency of polarization transfer can be improved by using adiabatic demagnetization and remagnetization techniques on stationary aligned samples; and proton assisted insensitive nuclei cross-polarization in magic angle sample spinning samples. Adiabatic cross-polarization technique provides an alternative mechanism for spin-diffusion experiments correlating 15N/15N and 15N/13C chemical shifts over large distances. Improved efficiency in cross-polarization with 40% - 100% sensitivity enhancements are observed in proteins and single crystals, respectively. We describe solid-state NMR experimental techniques that are optimal for membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. The techniques are illustrated with data from both single crystals of peptides and of membrane proteins in phospholipid bilayers.
PMID: 24044695 [PubMed - as supplied by publisher]
[NMR paper] Biomolecular magic-angle spinning solid-state NMR: recent methods and applications.
Biomolecular magic-angle spinning solid-state NMR: recent methods and applications.
Related Articles Biomolecular magic-angle spinning solid-state NMR: recent methods and applications.
Curr Opin Biotechnol. 2013 Mar 4;
Authors: Goldbourt A
Abstract
The link of structure and dynamics of biomolecules and their complexes to their function and to many cellular processes has driven the quest for their detailed characterization by a variety of biophysical techniques. Magic-angle spinning solid-state nuclear magnetic resonance spectroscopy...
nmrlearner
Journal club
0
03-14-2013 10:05 PM
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
July 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 220</br>
</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
April 2012
Publication year: 2012
Source:European Journal of Cell Biology, Volume 91, Issue 4</br>
</br>
Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Magic Angle Spinning and Oriented Sample Solid-State NMR Structural Restraints Combine for Influenza A M2 Protein Functional Insights
Magic Angle Spinning and Oriented Sample Solid-State NMR Structural Restraints Combine for Influenza A M2 Protein Functional Insights
Thach V. Can, Mukesh Sharma, Ivan Hung, Peter L. Gor’kov, William W. Brey and Timothy A. Cross
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3004039/aop/images/medium/ja-2012-004039_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja3004039
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/xappAmN-wb8
nmrlearner
Journal club
0
05-25-2012 07:14 PM
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
T. Gopinath, Gianluigi Veglia</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
04-26-2012 08:10 PM
[NMR paper] Magic angle spinning solid-state NMR spectroscopy for structural studies of protein i
Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
Related Articles Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation.
J Am Chem Soc. 2004 Dec 22;126(50):16608-20
Authors: Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V,...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Nature. 2002 Nov 7;420(6911):98-102
Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H
The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
Automated protein resonance assignments of magic angle spinning solid-state NMR spect
Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1).
Related Articles Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of ?1 immunoglobulin binding domain of protein G (GB1).
J Biomol NMR. 2010 Oct 8;
Authors: Moseley HN, Sperling LJ, Rienstra CM
Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for...