[NMR paper] Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins.
Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins.
Related ArticlesExperimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins.
Methods Mol Biol. 2018;1688:37-53
Authors: Gopinath T, Veglia G
Abstract
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived (15)N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
[NMR paper] Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Magic-Angle-Spinning Solid-State NMR of Membrane Proteins.
Methods Enzymol. 2015;557:307-328
Authors: Baker LA, Folkers GE, Sinnige T, Houben K, Kaplan M, van der Cruijsen EA, Baldus M
Abstract
Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging...
nmrlearner
Journal club
0
05-08-2015 09:18 PM
[NMR paper] Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations.
Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations.
J Magn Reson. 2015 Apr;253:143-53
Authors: Gopinath T, Veglia G
Abstract
Solid-state NMR...
nmrlearner
Journal club
0
03-24-2015 09:58 PM
Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations
Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations
Publication date: April 2015
Source:Journal of Magnetic Resonance, Volume 253</br>
Author(s): T. Gopinath , Gianluigi Veglia</br>
Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of...
[NMR paper] Experiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins.
Experiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins.
Related Articles Experiments Optimized for Magic Angle Spinning and Oriented Sample Solid-State NMR of Proteins.
J Phys Chem B. 2013 Sep 17;
Authors: Das BB, Lin EC, Opella SJ
Abstract
Structure determination by solid-state NMR of proteins is rapidly advancing as result of recent developments of samples, experimental methods, and calculations. There are a number of different solid-state NMR approaches that utilize stationary, aligned samples or...
nmrlearner
Journal club
0
09-21-2013 06:50 PM
[NMR paper] 2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.
2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.
Related Articles 2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.
J Phys Chem B. 2013 May 14;
Authors: Ramamoorthy A, Xu J
Abstract
There is significant interest in solving high-resolution dynamic structures of membrane-associated peptides using solid-state NMR spectroscopy. Previous solid-state NMR studies have provided valuable insights into the functional...
nmrlearner
Journal club
0
05-16-2013 06:05 PM
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
July 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 220</br>
</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
T. Gopinath, Gianluigi Veglia</br>
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...