BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2013, 10:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors.

Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors.

Related Articles Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors.

J Biol Chem. 2013 Jan 17;

Authors: Sarell CJ, Woods LA, Su Y, Debelouchina GT, Ashcroft AE, Griffin RG, Stockley PG, Radford SE

Abstract
Amyloid fibrils can be generated from proteins with diverse sequences and folds. While amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils), is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human ?2-microglobulin and its truncated variant ?N6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different sidechain packing and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils, to an extent that is greater than that obtained by polymerization of a single precursor alone.


PMID: 23329840 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Using Solid-State NMRTo Monitor the Molecular Consequencesof Cryptococcus neoformans Melanization with DifferentCatecholamine Precursors
Using Solid-State NMRTo Monitor the Molecular Consequencesof Cryptococcus neoformans Melanization with DifferentCatecholamine Precursors http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi300325m/aop/images/medium/bi-2012-00325m_0005.gif Biochemistry DOI: 10.1021/bi300325m http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/XNxzJQp9Uz4 More...
nmrlearner Journal club 0 07-25-2012 09:34 PM
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554.
NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554. NMR structure of the Bordetella bronchiseptica protein NP_888769.1 establishes a new phage-related protein family PF13554. Protein Sci. 2011 Apr 21; Authors: Atia-Tul-Wahab , Serrano P, Geralt M, Wüthrich K The solution structure of the hypothetical phage-related protein NP_888769.1 from the gram-negative bacterium Bordetella bronchoseptica contains a well-structured core comprising a five-stranded, antiparallel ?-sheet packed...
nmrlearner Journal club 0 04-27-2011 04:03 PM
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors Aaron J. Rossini, Ivan Hung, Samuel A. Johnson, Carla Slebodnick, Mike Mensch, Paul A. Deck and Robert W. Schurko http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107749b/aop/images/medium/ja-2010-07749b_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja107749b http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/GGw8Igo70Jo
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] Expanding the Scope of Protein Biosynthesis by Altering the Methionyl-tRNA Synthetase
Expanding the Scope of Protein Biosynthesis by Altering the Methionyl-tRNA Synthetase Activity of a Bacterial Expression Host Scott Ross was helpful in conducting the 1D TOCSY NMR experiments and Pratip Bhattachary is thanked for assistance in other NMR experiments. We are grateful to Yves Mechulam for a sample of plasmid pBSM547W305F and to Hieronim Jakubowski of UMDNJ-New Jersey Medical School, Newark, New Jersey, for plasmid pGG3. K.L.K. thanks the U.S. Department of Defense for a National Defense Science and Engineering Graduate Fellowship. This work was supported by grants from the...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR900 blog] Opportunities for studying polymorphs and cement-based materials via Ca-43 solid-stat
Opportunities for studying polymorphs and cement-based materials via Ca-43 solid-state NMR June 11, 2010, University of Ottawa Calcium is an important component in diverse materials and biochemicals. However, NMR spectroscopy of the only spin-active calcium isotope, Ca-43, is notoriously challenging due to its low natural abundance (0.14 %), low resonance frequency, and quadrupolar nature. Recently, researchers from the University of Ottawa, the NRC Steacie Institute for Molecular Sciences (SIMS-NRC), and Dalhousie University have independently reported advances in studies of inorganic...
nmrlearner News from NMR blogs 0 08-22-2010 02:30 AM
[NMR900 blog] Opportunities for studying polymorphs and cement-based materials via Ca-43 solid-stat
Opportunities for studying polymorphs and cement-based materials via Ca-43 solid-state NMR June 11, 2010, University of Ottawa Calcium is an important component in diverse materials and biochemicals. However, NMR spectroscopy of the only spin-active calcium isotope, Ca-43, is notoriously challenging due to its low natural abundance (0.14 %), low resonance frequency, and quadrupolar nature. Recently, researchers from the University of Ottawa, the NRC Steacie Institute for Molecular Sciences (SIMS-NRC), and Dalhousie University have independently reported advances in studies of inorganic...
nmrlearner News from NMR blogs 0 08-22-2010 02:18 AM
The NMR structure of the autophagy-related protein Atg8
The NMR structure of the autophagy-related protein Atg8 Content Type Journal Article DOI 10.1007/s10858-010-9420-1 Authors Hiroyuki Kumeta, Hokkaido University Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences Kita 12 Nishi 6 Kita-ku Sapporo 060-0812 Japan Masahiro Watanabe, Hokkaido University Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences Kita 12 Nishi 6 Kita-ku Sapporo 060-0812 Japan Hitoshi Nakatogawa, Tokyo Institute of Technology Integrated Research Institute Yokohama 226-8503 Japan
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:49 PM.


Map