Related ArticlesAn Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Sep 19;
Authors: Wang Y, Dmochowski IJ
Abstract
Molecular imaging holds considerable promise for elucidating biological processes in normal physiology as well as disease states, by determining the location and relative concentration of specific molecules of interest. Proton-based magnetic resonance imaging ((1)H MRI) is nonionizing and provides good spatial resolution for clinical imaging but lacks sensitivity for imaging low-abundance (i.e., submicromolar) molecular markers of disease or environments with low proton densities. To address these limitations, hyperpolarized (hp) (129)Xe NMR spectroscopy and MRI have emerged as attractive complementary methodologies. Hyperpolarized xenon is nontoxic and can be readily delivered to patients via inhalation or injection, and improved xenon hyperpolarization technology makes it feasible to image the lungs and brain for clinical applications. In order to target hp (129)Xe to biomolecular targets of interest, the concept of "xenon biosensing" was first proposed by a Berkeley team in 2001. The development of xenon biosensors has since focused on modifying organic host molecules (e.g., cryptophanes) via diverse conjugation chemistries and has brought about numerous sensing applications including the detection of peptides, proteins, oligonucleotides, metal ions, chemical modifications, and enzyme activity. Moreover, the large (~300 ppm) chemical shift window for hp (129)Xe bound to host molecules in water makes possible the simultaneous identification of multiple species in solution, that is, multiplexing. Beyond hyperpolarization, a 10(6)-fold signal enhancement can be achieved through a technique known as hyperpolarized (129)Xe chemical exchange saturation transfer (hyper-CEST), which shows great potential to meet the sensitivity requirement in many applications. This Account highlights an expanded palette of hyper-CEST biosensors, which now includes cryptophane and cucurbit[6]uril (CB[6]) small-molecule hosts, as well as genetically encoded gas vesicles and single proteins. In 2015, we reported picomolar detection of commercially available CB[6] via hyper-CEST. Inspired by the versatile host-guest chemistry of CB[6], our lab and others developed "turn-on" strategies for CB[6]-hyper-CEST biosensing, demonstrating detection of protein analytes in complex media and specific chemical events. CB[6] is starting to be employed for in vivo imaging applications. We also recently determined that TEM-1 ?-lactamase can function as a single-protein reporter for hyper-CEST and observed useful saturation contrast for ?-lactamase expressed in bacterial and mammalian cells. These newly developed small-molecule and genetically encoded xenon biosensors offer significant potential to extend the scope of hp (129)Xe toward molecular MRI.
PMID: 27643815 [PubMed - as supplied by publisher]
Systematic T1 improvement for hyperpolarized (129)xenon
From The DNP-NMR Blog:
Systematic T1 improvement for hyperpolarized (129)xenon
Repetto M, Babcock E, Blumler P, Heil W, Karpuk S, Tullney K. Systematic T1 improvement for hyperpolarized (129)xenon. J Magn Reson. 2015;252(0):163-9.
http://www.ncbi.nlm.nih.gov/pubmed/25702572
nmrlearner
News from NMR blogs
0
05-19-2015 09:10 AM
[NMR paper] Cell-compatible, integrin-targeted cryptophane-(129)Xe NMR biosensors.
Cell-compatible, integrin-targeted cryptophane-(129)Xe NMR biosensors.
Related Articles Cell-compatible, integrin-targeted cryptophane-(129)Xe NMR biosensors.
Chem Sci. 2011 Jun;2(6):1103-1110
Authors: Seward GK, Bai Y, Khan NS, Dmochowski IJ
Abstract
Peptide-modified cryptophane enables sensitive detection of protein analytes using hyperpolarized (129)Xe NMR spectroscopy. Here we report improved targeting and delivery of cryptophane to cells expressing ?v?3 integrin receptor, which is overexpressed in many human cancers....
nmrlearner
Journal club
0
11-06-2014 08:45 PM
Xenon boost: Medical microfluidics
Xenon boost: Medical microfluidics
http://www.spectroscopynow.com/common/images/thumbnails/14641bbcd0c.jpgA microfluidic device that can generate polarised xenon-129 gas and detect it by nuclear magnetic resonance, NMR, spectroscopy at tiny concentrations has been developed by an international team. The device could give a noble boost to biomedical analysis and medical imaging.
Read the rest at Spectroscopynow.com
Nanoemulsion Contrast Agents with Sub-picomolar Sensitivity for Xenon NMR
From The DNP-NMR Blog:
Nanoemulsion Contrast Agents with Sub-picomolar Sensitivity for Xenon NMR
Stevens, T.K., R.M. Ramirez, and A. Pines, Nanoemulsion Contrast Agents with Sub-picomolar Sensitivity for Xenon NMR. J. Am. Chem. Soc., 2013. 135(26): p. 9576-9579.
http://dx.doi.org/10.1021/ja402885q
nmrlearner
News from NMR blogs
0
11-21-2013 01:14 AM
Nanoemulsion Contrast Agents with Sub-picomolar Sensitivityfor Xenon NMR
Nanoemulsion Contrast Agents with Sub-picomolar Sensitivityfor Xenon NMR
Todd K. Stevens, R. Matthew Ramirez and Alexander Pines
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja402885q/aop/images/medium/ja-2013-02885q_0003.gif
Journal of the American Chemical Society
DOI: 10.1021/ja402885q
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/tOmAQoYFsGk
nmrlearner
Journal club
0
06-19-2013 08:08 AM
[NMR paper] Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Related Articles Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
J Am Chem Soc. 2005 Aug 24;127(33):11676-83
Authors: Desvaux H, Dubois L, Huber G, Quillin ML, Berthault P, Matthews BW
Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] The methanol-induced globular and expanded denatured states of cytochrome c: a study
The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering.
J Mol Biol. 1996 Jun 14;259(3):512-23
Authors: Kamatari YO, Konno T, Kataoka M, Akasaka K
Methanol-induced conformational transitions of...