BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-15-2017, 03:26 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Existence of isolated H3O+ in the protein interior

Existence of isolated H3O+ in the protein interior


Neutron diffraction analysis studies reported an isolated hydronium ion (H3O+) in the interior of D-xylose isomerase (XI) and phycocyanobilin-ferredoxin oxidoreductase (PcyA). H3O+ forms hydrogen bonds (H-bonds) with two histidine side-chains and a backbone carbonyl group in PcyA, whereas H3O+ forms H-bonds with three acidic residues in XI. Using a quantum mechanical/molecular mechanical (QM/MM) approach, we analyzed stabilization of H3O+ by the protein environment. QM/MM calculations indicated that H3O+ was unstable in the PcyA crystal structure, releasing a proton to an H-bond partner His88, producing H2O and protonated His88. On the other hand, H3O+ was stable in the XI crystal structure. H-bond partners of isolated H3O+ would be practically limited to acidic residues such as aspartic and glutamic acids in the protein environment.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Transient Access to the Protein Interior: Simulation Versus NMR
Transient Access to the Protein Interior: Simulation Versus NMR Publication date: 28 January 2014 Source:Biophysical Journal, Volume 106, Issue 2, Supplement 1</br> Author(s): Filip Persson , Bertil Halle</br> </br></br> </br></br> More...
nmrlearner Journal club 0 01-29-2014 12:50 AM
Transient Access to the Protein Interior: Simulation versus NMR
Transient Access to the Protein Interior: Simulation versus NMR Filip Persson and Bertil Halle http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja403405d/aop/images/medium/ja-2013-03405d_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja403405d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/c6S7B-kGEWU
nmrlearner Journal club 0 05-30-2013 09:38 AM
[NMR paper] Transient Access to the Protein Interior: Simulation versus NMR.
Transient Access to the Protein Interior: Simulation versus NMR. Related Articles Transient Access to the Protein Interior: Simulation versus NMR. J Am Chem Soc. 2013 May 15; Authors: Persson F, Halle B Abstract Many proteins rely for their function on rare structural fluctuations whereby solvent and other small molecules gain transient access to internal cavities. In magnetic relaxation dispersion (MRD) experiments, water molecules buried in such cavities are used as intrinsic probes of the intermittent protein motions that govern their...
nmrlearner Journal club 0 05-17-2013 07:00 PM
[NMR paper] NMR structure of the bovine prion protein isolated from healthy calf brains.
NMR structure of the bovine prion protein isolated from healthy calf brains. Related Articles NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep. 2004 Dec;5(12):1159-64 Authors: Hornemann S, Schorn C, Wüthrich K NMR structures of recombinant prion proteins from various species expressed in Escherichia coli have been solved during the past years, but the fundamental question of the relevancy of these data relative to the naturally occurring forms of the prion protein has not been directly addressed. Here, we...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Isolated EF-loop III of calmodulin in a scaffold protein remains unpaired in solution
Isolated EF-loop III of calmodulin in a scaffold protein remains unpaired in solution using pulsed-field-gradient NMR spectroscopy. Related Articles Isolated EF-loop III of calmodulin in a scaffold protein remains unpaired in solution using pulsed-field-gradient NMR spectroscopy. Biochim Biophys Acta. 2002 Jul 29;1598(1-2):80-7 Authors: Lee HW, Yang W, Ye Y, Liu ZR, Glushka J, Yang JJ Calmodulin (CaM) is a trigger calcium-dependent protein that regulates many biological processes. We have successfully engineered a series of model proteins,...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray cr
NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1. Related Articles NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1. Biopolymers. 2002 Feb;63(2):111-21 Authors: Kowalski JA, Liu K, Kelly JW The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Ev
NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Related Articles NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004-14 Authors: Blanco FJ, Jiménez MA, Pineda A, Rico M, Santoro J, Nieto JL The solution structure of the isolated N-terminal fragment of streptococcal protein-G B1 domain has been...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Ev
NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Related Articles NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004-14 Authors: Blanco FJ, Jiménez MA, Pineda A, Rico M, Santoro J, Nieto JL The solution structure of the isolated N-terminal fragment of streptococcal protein-G B1 domain has been...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:33 PM.


Map