BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-09-2011, 06:42 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.

An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.

An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR.

Protein Eng Des Sel. 2011 Sep 6;

Authors: Sekiguchi M, Kobashigawa Y, Kawasaki M, Yokochi M, Kiso T, Suzumura KI, Mori K, Teramura T, Inagaki F

Abstract
Mammalian target of rapamycin (mTOR), a large multidomain protein kinase, regulates cell growth and metabolism in response to environmental signals. The FKBP rapamycin-binding (FRB) domain of mTOR is a validated therapeutic target for the development of immunosuppressant and anticancer drugs but is labile and insoluble. Here we designed a fusion protein between FKBP12 and the FRB domain of mTOR. The fusion protein was successfully expressed in Escherichia coli as a soluble form, and was purified by a simple two-step chromatographic procedure. The fusion protein exhibited increased solubility and stability compared with the isolated FRB domain, and facilitated the analysis of rapamycin and FK506 binding using differential scanning calorimetry (DSC) and solution nuclear magnetic resonance (NMR). DSC enabled the rapid observation of protein-drug interactions at the domain level, while NMR gave insights into the protein-drug interactions at the residue level. The use of the FKBP12-FRB fusion protein combined with DSC and NMR provides a useful tool for the efficient screening of FKBP12-dependent as well as -independent inhibitors of the mTOR FRB domain.


PMID: 21900305 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions.
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC Struct Biol. 2011 May 12;11(1):24 Authors: Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA ABSTRACT: BACKGROUND: Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural...
nmrlearner Journal club 0 05-17-2011 06:21 PM
Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy.
Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy. Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy. Chembiochem. 2011 Feb 11;12(3):390-1 Authors: Barnes CO, Monteith WB, Pielak GJ
nmrlearner Journal club 0 02-04-2011 11:34 AM
Internal and Global Protein Motion Assessed with a Fusion Construct and In-Cell NMR Spectroscopy.
Internal and Global Protein Motion Assessed with a Fusion Construct and In-Cell NMR Spectroscopy. Internal and Global Protein Motion Assessed with a Fusion Construct and In-Cell NMR Spectroscopy. Chembiochem. 2010 Dec 15; Authors: Barnes CO, Monteith WB, Pielak GJ
nmrlearner Journal club 0 12-17-2010 11:23 AM
[NMR paper] NMR backbone assignment of a protein kinase catalytic domain by a combination of seve
NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Related Articles NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. Chembiochem. 2004 Nov 5;5(11):1508-16 Authors: Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H Protein phosphorylation is one of the most important mechanisms...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] An efficient fusion expression system for protein and peptide overexpression in Esche
An efficient fusion expression system for protein and peptide overexpression in Escherichia coli and NMR sample preparation. Related Articles An efficient fusion expression system for protein and peptide overexpression in Escherichia coli and NMR sample preparation. Protein Pept Lett. 2003 Apr;10(2):175-81 Authors: Cheng Y, Liu D, Feng Y, Jing G An efficient fusion expression system with a small fusion partner, His6-tagged N-terminal fragment of staphylococcal nuclease R, has been constructed and tested with two genes. The results show that...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Remodeling of HDL by phospholipid transfer protein: demonstration of particle fusion
Remodeling of HDL by phospholipid transfer protein: demonstration of particle fusion by 1H NMR spectroscopy. Related Articles Remodeling of HDL by phospholipid transfer protein: demonstration of particle fusion by 1H NMR spectroscopy. Biochem Biophys Res Commun. 1998 Aug 28;249(3):910-6 Authors: Korhonen A, Jauhiainen M, Ehnholm C, Kovanen PT, Ala-Korpela M There is evidence that phospholipid transfer protein (PLTP) can increase reverse cholesterol transport by inducing favorable subclass distribution in the high density lipoprotein (HDL)...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Protein structure determination using a combination of comparative modeling and NMR s
Protein structure determination using a combination of comparative modeling and NMR spectroscopy. Application to the response regulator protein, Spo0F. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Protein structure determination using a combination of comparative modeling and NMR spectroscopy. Application to the response regulator protein, Spo0F. J Med Chem. 1997 Oct 10;40(21):3453-5 Authors: Podlogar BL, Leo GC, McDonnell PA, Loughney DA, Caldwell GW, Barrett JF A practical...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] The mechanism of aluminum-independent G-protein activation by fluoride and magnesium.
The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. Related Articles The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. J Biol Chem. 1993 Feb 5;268(4):2393-402 Authors: Antonny B, Sukumar M, Bigay J, Chabre M, Higashijima T With magnesium present, fluoride and aluminum ions activate heterotrimeric G-proteins by forming AlFx complexes that mimic the gamma phosphate of...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:13 AM.


Map