Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30Â*kDa membrane protein GlpG
Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30Â*kDa membrane protein GlpG
Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire 1H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts. Drawing inspiration from sensitivity-enhanced TOCSY experiments in solution NMR, we have explored the potential of 13C- 13C TOCSY mixing as a viable option for triple sensitivity-enhanced 4D experiments aimed at side-chain assignments in solid-state NMR. Through simulations and experimental trials, we have identified optimal conditions to achieve uniform transfer efficiency for both transverse components and to minimize undesired cross-transfers. Our experiments, conducted on the 30Â*kDa membrane protein GlpG embedded in E. coli liposomes, have demonstrated enhanced sensitivity compared to the most effective dipolar and J-coupling-based 13C- 13C mixing sequences. Notably, a non-uniformly sampled 4D hCXCANH spectrum with exceptionally high sensitivity was obtained in just a few days using a 600Â*MHz spectrometer equipped with a 1.3Â*mm probe operating at a magic angle spinning rate of 55Â*kHz.
[NMR paper] Unambiguous Side-Chain Assignments for Solid-State NMR Structure Elucidation of Nondeuterated Proteins via a Combined 5D/4D Side-Chain-to-Backbone Experiment
Unambiguous Side-Chain Assignments for Solid-State NMR Structure Elucidation of Nondeuterated Proteins via a Combined 5D/4D Side-Chain-to-Backbone Experiment
Owing to fast-magic-angle-spinning technology, proton-detected solid-state NMR has been facilitating the analysis of insoluble, crystalline, sedimented, and membrane proteins. However, potential applications have been largely restricted by limited access to side-chain resonances. The recent availability of spinning frequencies exceeding 100 kHz in principle now allows direct probing of all protons without the need for partial...
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes
Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosomeâ??nascent chain complexes
Abstract
The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies...
nmrlearner
Journal club
0
08-08-2015 12:17 PM
[NMR paper] Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Related Articles Sensitivity and resolution enhancement of oriented solid-state NMR: Application to membrane proteins.
Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:50-68
Authors: Gopinath T, Mote KR, Veglia G
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS)...
nmrlearner
Journal club
0
10-29-2013 08:21 PM
[NMR paper] Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.
Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.
Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p.
Biomol NMR Assign. 2013 Aug 14;
Authors: Schütz AK, Habenstein B, Luckgei N, Bousset L, Sourigues Y, Nielsen AB, Melki R, Böckmann A, Meier BH
Abstract
Sup35p is a yeast prion and is responsible for the trait in Saccharomyces cerevisiae. With 685 amino acids, full-length soluble and fibrillar Sup35p are challenging targets for structural biology as they cannot be investigated...
nmrlearner
Journal club
0
08-15-2013 07:45 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Publication date: Available online 12 August 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br>
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
nmrlearner
Journal club
0
08-13-2013 04:09 AM
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
J Magn Reson. 2011 Aug 30;
Authors: Qiang W
Abstract
We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the...