BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-30-2016, 04:57 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST

Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST

Abstract


Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the μsâ??ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carrâ??Purcellâ??Meiboomâ??Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and structural parameters from these measurements is predicated upon mathematical modeling of the resulting relaxation profiles, which in turn relies on knowledge of the initial magnetization conditions at the start of the CPMG/CEST relaxation elements in these experiments. Most fitting programs simply assume initial magnetization conditions that are given by equilibrium populations, which may be incorrect in certain implementations of experiments. In this study we have quantified the systematic errors in extracted parameters that are generated from analyses of CPMG and CEST experiments using incorrect initial boundary conditions. We find that the errors in exchange rates (k ex ) and populations (p E ) are typically small (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Effects of J couplings and unobservable minor states on kinetics parameters extracted from CEST data
Effects of J couplings and unobservable minor states on kinetics parameters extracted from CEST data Publication date: Available online 31 October 2014 Source:Journal of Magnetic Resonance</br> Author(s): Yang Zhou , Daiwen Yang</br> Chemical Exchange Saturation Transfer (CEST) experiments have emerged as a powerful tool for characterizing dynamics and sparse populated conformers of protein in slow exchanging systems. We show that J couplings and ‘invisible’ minor states can cause systematic errors in kinetics parameters and chemical shifts extracted from CEST...
nmrlearner Journal club 0 11-14-2014 08:33 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 01-02-2013 01:48 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 11-22-2012 11:49 AM
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants Abstract 15N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2. Here, the extent of...
nmrlearner Journal club 0 11-14-2012 08:07 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 10-12-2012 09:58 AM
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja210711v http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner Journal club 0 02-03-2012 09:50 AM
Presentation on CPMG relaxation dispersion experiments
Presentation on CPMG relaxation dispersion experiments From A. Mittermaier -- LEK lab More...
nmrlearner General 0 04-14-2011 01:30 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:44 PM.


Map