Related ArticlesEvaluating Amber force fields using computed NMR chemical shifts.
Proteins. 2017 Jul 08;:
Authors: Koes DR, Vries JK
Abstract
NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the (1) H, (15) N and (13) C(a) atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in non-bonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of non-bonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. This article is protected by copyright. All rights reserved.
PMID: 28688107 [PubMed - as supplied by publisher]
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain order parameters
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain order parameters
Abstract
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify MD force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or nuclear magnetic resonance (NMR) chemical shifts and residual dipolar couplings. NMR derived Lipari–Szabo squared generalized order parameter (O2)...
nmrlearner
Journal club
0
04-04-2016 12:40 PM
[NMR paper] On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain NMR order parameters.
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain NMR order parameters.
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain NMR order parameters.
Protein Sci. 2016 Mar 14;
Authors: O'Brien ES, Wand AJ, Sharp KA
Abstract
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify molecular dynamics force fields, most...
nmrlearner
Journal club
0
03-19-2016 09:23 PM
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain NMR order parameters
On the ability of molecular dynamics force fields to recapitulate NMR derived protein side chain NMR order parameters
Abstract
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify molecular dynamics force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or NMR chemical shifts and residual dipolar couplings. NMR derived Lipari-Szabo squared generalized order parameter (O2) values of...
nmrlearner
Journal club
0
03-15-2016 11:57 AM
[NMR paper] Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field.
Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field.
Related Articles Molecular Dynamics Simulations of 441 Two-Residue Peptides in Aqueous Solution: Conformational Preferences and Neighboring Residue Effects with the Amber ff99SB-ildn-NMR Force Field.
J Chem Theory Comput. 2015 Mar 10;11(3):1315-1329
Authors: Li S, Andrews CT, Frembgen-Kesner T, Miller MS, Siemonsma SL, Collingsworth TD, Rockafellow IT, Ngo NA,...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
[NMR paper] Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.
Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.
Towards Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds.
J Phys Chem B. 2015 Aug 14;
Authors: Rorick A, Michael MA, Yang L, Zhang Y
Abstract
Oxygen is an important element in most biologically significant molecules and experimental solid-state...
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
http://i.ytimg.com/vi/7R7iM636WhY/default.jpg
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
This video is part of a 28-lecture graduate-level course titled "Organic Spectroscopy" taught at UC Irvine by Professor James S. Nowick. The course covers in...
From:UCITLTC
Views:7351
http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner
NMR educational videos
0
03-22-2013 05:19 AM
Sequential nearest-neighbor effects on computed 13Cα chemical shifts
Abstract To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical...