BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Establishing isostructural metal substitution in metalloproteins using 1H NMR, circul

Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy.

Related Articles Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy.

Protein Sci. 1995 Aug;4(8):1571-6

Authors: Pountney DL, Henehan CJ, Vasák M

Far-UV CD, 1H-NMR, and Fourier transform infrared (FTIR) spectroscopy are three of the most commonly used methods for the determination of protein secondary structure composition. These methods are compared and evaluated as a means of establishing isostructural metal substitution in metalloproteins, using the crystallographically defined rubredoxin from Desulfovibrio gigas and its well-characterized cadmium derivative as a model system. It is concluded that analysis of the FTIR spectrum of the protein amide I resonance represents the most facile and generally applicable method of determining whether the overall structure of a metalloprotein has been altered upon metal reconstitution. This technique requires relatively little biological material (ca. 300 micrograms total protein) and, unlike either CD or 1H-NMR spectroscopy, is unaffected by the presence of different metal ions, thus allowing the direct comparison of FTIR spectra before and after metal substitution.

PMID: 8520483 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Probing Transient HoogsteenHydrogen Bonds in CanonicalDuplex DNA Using NMR Relaxation Dispersion and Single-Atom Substitution
Probing Transient HoogsteenHydrogen Bonds in CanonicalDuplex DNA Using NMR Relaxation Dispersion and Single-Atom Substitution Evgenia N. Nikolova, Federico L. Gottardo and Hashim M. Al-Hashimi http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2117816/aop/images/medium/ja-2011-117816_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja2117816 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/KUfkJD6mGz8
nmrlearner Journal club 0 02-17-2012 08:50 AM
Solution NMR Approaches for Establishing Specificity of Weak Heterodimerization of Membrane Proteins
Solution NMR Approaches for Establishing Specificity of Weak Heterodimerization of Membrane Proteins Tiandi Zhuang, Bing K. Jap and Charles R. Sanders http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja208972h/aop/images/medium/ja-2011-08972h_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja208972h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/J2oj2lBVCo4
nmrlearner Journal club 0 11-30-2011 10:45 PM
NMR Studies of Metalloproteins.
NMR Studies of Metalloproteins. NMR Studies of Metalloproteins. Top Curr Chem. 2011 Aug 2; Authors: Li H, Sun H Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding...
nmrlearner Journal club 0 08-03-2011 12:00 PM
[NMR paper] NMR structures of paramagnetic metalloproteins.
NMR structures of paramagnetic metalloproteins. Related Articles NMR structures of paramagnetic metalloproteins. Q Rev Biophys. 2005 May;38(2):167-219 Authors: Arnesano F, Banci L, Piccioli M Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion
PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics. Related Articles PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics. J Biomol NMR. 1998 Nov;12(4):553-7 Authors: Banci L, Bertini I, Cremonini MA, Gori-Savellini G, Luchinat C, Wüthrich K, Güntert P The program DYANA, for calculation of solution structures of biomolecules with an algorithm based on simulated annealing by torsion angle dynamics, has been supplemented with a...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigatio
Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II)-substituted human carbonic anhydrase II. Related Articles Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II)-substituted human carbonic anhydrase II. J Magn Reson B. 1994 Jul;104(3):230-9 Authors: Bertini I, Jonsson BH, Luchinat C, Pierattelli R, Vila AJ The title protein with MW 30,000 containing high-spin cobalt (II) has been...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigatio
Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II)-substituted human carbonic anhydrase II. Related Articles Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II)-substituted human carbonic anhydrase II. J Magn Reson B. 1994 Jul;104(3):230-9 Authors: Bertini I, Jonsson BH, Luchinat C, Pierattelli R, Vila AJ The title protein with MW 30,000 containing high-spin cobalt (II) has been...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Identification of cysteine ligands in metalloproteins using optical and NMR spectrosc
Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model 2- center. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model 2- center. Protein...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:48 PM.


Map