BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-24-2016, 11:36 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Erratum to: Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spinā??spin interactions

Erratum to: Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spinā??spin interactions



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spinā??spin interactions
Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spinā??spin interactions Abstract Heteronuclear and homonuclear direct (D) and indirect (J) spinā??spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spinā??spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions...
nmrlearner Journal club 0 12-28-2015 12:26 AM
[NMR images] alignment of protons in a spinning nucleus in a static magnetic field
http://3.bp.blogspot.com/_xzA3dAIYcxY/TCkUTUW2rCI/AAAAAAAABLA/MMDEmeg5w_E/s1600/alignment of protons in a spinning nucleus in a static magnetic field.gif 16/03/2014 4:10:16 PM GMT alignment of protons in a spinning nucleus in a static magnetic field More...
nmrlearner NMR pictures 0 03-25-2014 11:49 AM
[NMR images] mri magnetic resonance imaging uses a strong magnetic field radio ...
http://washingtonradiology.com/img/mri-img.jpg 20/03/2014 12:28:21 PM GMT mri magnetic resonance imaging uses a strong magnetic field radio ... More...
nmrlearner NMR pictures 0 03-20-2014 12:44 PM
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy Bo Zhao, Alexandar L. Hansen and Qi Zhang http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409835y/aop/images/medium/ja-2013-09835y_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja409835y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/iu74AOgzY6s
nmrlearner Journal club 0 12-19-2013 05:34 AM
[NMR images] Nucleic acid and protein NMR
http://images.betterworldbooks.com/047/NMR-of-Proteins-and-Nucleic-Acids-9780471828938.jpg uoypuip.tumblr.com 11/11/2011 8:27:59 AM GMT Nucleic acid and protein NMR More...
nmrlearner NMR pictures 0 11-12-2011 01:40 AM
[NMR paper] NMR studies of protein-nucleic acid interactions.
NMR studies of protein-nucleic acid interactions. Related Articles NMR studies of protein-nucleic acid interactions. Methods Mol Biol. 2004;278:289-312 Authors: Varani G, Chen Y, Leeper TC Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the...
nmrlearner Journal club 0 11-24-2010 09:25 PM
alignment in a magnetic field
hi all, I have a general question about alignment in a magnetic field. For me, alignment in alignment media is easier to grasp because of interactions that I am familiar with as a chemist. But, whats the principle behind molecules that align in a magnetic field? There are a lot of examples like cyanometmyoglobin (from the Prestegard paper) where paramagnetic susceptibility plays a role. Thats understandable from my side. But what about for instance short DNA dimers (helices), collagen gels or bacteriophages? I could not really find a nice (clear to me) explanation, why these...
Hydrazin NMR Questions and Answers 1 09-23-2010 06:13 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:17 PM.


Map