Related ArticlesEnsemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS.
Sci Rep. 2020 Nov 11;10(1):19574
Authors: Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S
Abstract
Using SAXS and NMR spectroscopy, we herein provide a high-resolution description of the intrinsically disordered N-terminal domain (PNT, aa 1-406) shared by the Nipah virus (NiV) phosphoprotein (P) and V protein, two key players in viral genome replication and in evasion of the host innate immune response, respectively. The use of multidimensional NMR spectroscopy allowed us to assign as much as 91% of the residues of this intrinsically disordered domain whose size constitutes a technical challenge for NMR studies. Chemical shifts and nuclear relaxation measurements provide the picture of a highly flexible protein. The combination of SAXS and NMR information enabled the description of the conformational ensemble of the protein in solution. The present results, beyond providing an overall description of the conformational behavior of this intrinsically disordered region, also constitute an asset for obtaining atomistic information in future interaction studies with viral and/or cellular partners. The present study can thus be regarded as the starting point towards the design of inhibitors that by targeting crucial protein-protein interactions involving PNT might be instrumental to combat this deadly virus.
[ASAP] Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET
Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET
Gregory-Neal W. Gomes, Mickae?l Krzeminski, Ashley Namini, Erik W. Martin, Tanja Mittag, Teresa Head-Gordon, Julie D. Forman-Kay, and Claudiu C. Gradinaru
https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.0c02088/20200904/images/medium/ja0c02088_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.0c02088
http://feeds.feedburner.com/~r/acs/jacsat/~4/ouvFj6sHuyQ
nmrlearner
Journal club
0
09-13-2020 09:18 AM
[NMR paper] Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET.
Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET.
Related Articles Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET.
J Am Chem Soc. 2020 Aug 25;:
Authors: Gomes GW, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradinaru CC
Abstract
Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes structural characterization challenging,...
nmrlearner
Journal club
0
08-26-2020 02:46 PM
A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study
A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study
Abstract
The C-terminal domain of histone H1.0 (C-H1.0) is involved in DNA binding and is a main determinant of the chromatin condensing properties of histone H1.0. Phosphorylation at the (S/T)-P-X-(K/R) motifs affects DNA binding and is crucial for regulation of C-H1.0 function. Since C-H1.0 is an intrinsically disordered domain, solution NMR is an excellent approach to characterize the...
nmrlearner
Journal club
0
11-25-2018 06:02 AM
[NMR paper] NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B.
NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B.
Related Articles NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B.
J Biol Chem. 2017 Sep 14;:
Authors: Bessa LM, Launay H, Dujardin M, Cantrelle FX, Lippens G, Landrieu I, Schneider R, Hanoulle X
Abstract
Non-structural protein 5B (NS5B) is the RNAdependent RNA polymerase that catalyses replication of the...
nmrlearner
Journal club
0
09-16-2017 09:58 PM
[NMR paper] Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins
Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins
The dynamic fluctuations of intrinsically disordered proteins (IDPs) define their function. Although experimental nuclear magnetic resonance (NMR) relaxation reveals the motional complexity of these highly flexible proteins, the absence of physical models describing IDP dynamics hinders their mechanistic interpretation. Combining molecular dynamics simulation and NMR, we introduce a framework in which distinct motions are attributed to local libration, backbone dihedral angle...
nmrlearner
Journal club
0
08-23-2017 03:18 AM
A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP
A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP
Abstract
Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
[NMR paper] Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
Related Articles Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
Adv Exp Med Biol. 2015;870:123-147
Authors: Kragelj J, Blackledge M, Jensen MR
Abstract
Intrinsically disordered proteins (IDPs) perform their function despite their lack of well-defined tertiary structure. Residual structure has been observed in IDPs, commonly described as transient/dynamic or expressed in terms of fractional populations. In order to...
nmrlearner
Journal club
0
09-21-2015 03:01 PM
[NMR paper] Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Related Articles Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Chembiochem. 2014 Dec 9;
Authors: Baronti L, Erales J, Habchi J, Felli IC, Pierattelli R, Longhi S
Abstract
We provide an atomic-resolution description...