BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Energetics by NMR: site-specific binding in a positively cooperative system.

Energetics by NMR: site-specific binding in a positively cooperative system.

Related Articles Energetics by NMR: site-specific binding in a positively cooperative system.

Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1847-52

Authors: Tochtrop GP, Richter K, Tang C, Toner JJ, Covey DF, Cistola DP

Proteins with multiple binding sites exhibit a complex behavior that depends on the intrinsic affinities for each site and the energetic communication between the sites. The contributions from intrinsic affinity and cooperativity are difficult to deconvolute using conventional binding experiments that lack information about the occupancies of individual sites. Here, we report the concerted use of NMR and isothermal titration calorimetry to determine the intrinsic and cooperative binding free energies for a ligand-protein complex. The NMR measurements provided the site-specific information necessary to resolve the binding parameters. Using this approach, we observed that human ileal bile acid binding protein binds two molecules of glycocholic acid with low intrinsic affinity but an extraordinarily high degree of positive cooperativity. The highly cooperative nature of the binding provides insights into the protein's biological mechanism. With ongoing improvements in sensitivity and resolution, NMR methods are becoming more amenable to dissecting the complex binding energetics of multisite systems.

PMID: 11854486 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand...
nmrlearner Journal club 0 07-13-2011 06:42 PM
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200067t/aop/images/medium/bi-2011-00067t_0002.gif Biochemistry DOI: 10.1021/bi200067t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sLQe7ipMThM More...
nmrlearner Journal club 0 04-15-2011 01:40 AM
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Chem Biol Drug Des. 2011 Jan 14; Authors: Chandra K, Mustafi SM, Muthukumar S, Chary KV The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature...
nmrlearner Journal club 0 01-18-2011 10:22 PM
[NMR paper] NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide
NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide. Related Articles NMR study on the binding of d(GGAAATTTCC)2 with a positively charged pentacosapeptide. Biochim Biophys Acta. 1998 Nov 8;1442(2-3):137-47 Authors: van Lieshout E, Hemminga MA To obtain a better understanding of the electrostatic nature of protein-nucleic acid interactions, we have investigated the interaction of a double-stranded decamer d(GGAAATTTCC)2 with a synthetic arginine and lysine-rich pentacosapeptide (Pep25), using NMR and optical...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] A residue-specific NMR view of the non-cooperative unfolding of a molten globule.
A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Related Articles A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630-4 Authors: Schulman BA, Kim PS, Dobson CM, Redfield C Molten globules are partially folded forms of proteins that are thought to be general intermediates in protein folding. Nonetheless, there is limited structural information about such species because they possess conformational heterogeneity and complex dynamical properties that...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies
NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry. 1996 Jul 30;35(30):9637-46 Authors: Scheuring J, Fischer M, Cushman M, Lee J, Bacher A,...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] A constraint reasoning system for automating sequence-specific resonance assignments
A constraint reasoning system for automating sequence-specific resonance assignments from multidimensional protein NMR spectra. Related Articles A constraint reasoning system for automating sequence-specific resonance assignments from multidimensional protein NMR spectra. Proc Int Conf Intell Syst Mol Biol. 1993;1:447-55 Authors: Zimmerman DE, Kulikowski CA, Montelione GT AUTOASSIGN is a prototype expert system designed to aid in the determination of protein structure from nuclear magnetic resonance (NMR) measurements. In this paper we focus...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-N
Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. Related Articles Site-specific 13C-labeling of Trp 62 in hen egg-white lysozyme: preparation and 13C-NMR titration of Trp 62-lysozyme. J Biochem. 1991 Aug;110(2):295-300 Authors: Nakazawa T, Sakiyama F The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:17 AM.


Map