BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2013, 10:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Electron Spin Density on the Axial His Ligand of High-Spin and Low-Spin Nitrophorin 2 Probed by Heteronuclear NMR Spectroscopy.

Electron Spin Density on the Axial His Ligand of High-Spin and Low-Spin Nitrophorin 2 Probed by Heteronuclear NMR Spectroscopy.

Related Articles Electron Spin Density on the Axial His Ligand of High-Spin and Low-Spin Nitrophorin 2 Probed by Heteronuclear NMR Spectroscopy.

Inorg Chem. 2013 Jan 17;

Authors: Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ

Abstract
The electronic structure of heme proteins is exquisitely tuned by the interaction of the iron center with the axial ligands. NMR studies of paramagnetic heme systems have been focused on the heme signals, but signals from the axial ligands have been rather difficult to detect and assign. We report an extensive assignment of the (1)H, (13)C and (15)N resonances of the axial His ligand in the NO-carrying protein nitrophorin 2 (NP2) in the paramagnetic high-spin and low-spin forms, as well as in the diamagnetic NO complex. We find that the high-spin protein has ? spin delocalization to all atoms in the axial His57, which decreases in size as the number of bonds between Fe(III) and the atom in question increases, except that within the His57 imidazole ring the contact shifts are a balance between positive ? and negative ? contributions. In contrast, the low-spin protein has ? spin delocalization to all atoms of the imidazole ring. Our strategy, adequately combined with a selective residue labeling scheme, represents a straightforward characterization of the electron spin density in heme axial ligands.


PMID: 23327568 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Observation of scalar nuclear spin-spin coupling in van der Waals complexes.
From Mendeley Biomolecular NMR group: Observation of scalar nuclear spin-spin coupling in van der Waals complexes. Proceedings of the National Academy of Sciences of the United States of America (2012). Volume: 109, Issue: 31. Pages: 12393-7. Micah P Ledbetter, Giacomo Saielli, Alessandro Bagno, Nhan Tran, Michael V Romalis et al. Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a...
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group: Water proton spin saturation affects measured protein backbone 15N spin relaxation rates Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al. Published using Mendeley: The library management tool for researchers
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Observation of scalar nuclear spin-spin coupling in van der Waals complexes.
From Mendeley Biomolecular NMR group: Observation of scalar nuclear spin-spin coupling in van der Waals complexes. Proceedings of the National Academy of Sciences of the United States of America (2012). Volume: 109, Issue: 31. Pages: 12393-7. Micah P Ledbetter, Giacomo Saielli, Alessandro Bagno, Nhan Tran, Michael V Romalis et al. Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a...
nmrlearner Journal club 0 10-29-2012 12:57 AM
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 216</br> Elka R. Georgieva, Aritro S. Roy, Vladimir M. Grigoryants, Petr P. Borbat, Keith A. Earle, Charles P. Scholes, Jack H. Freed</br> Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant...
nmrlearner Journal club 0 03-13-2012 03:33 PM
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 24 January 2012</br> Elka R.*Georgieva, Aritro S.*Roy, Vladimir M.*Grigoryants, Petr P.*Borbat, Keith A.*Earle, ...</br> Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the...
nmrlearner Journal club 0 01-25-2012 08:56 AM
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Water proton spin saturation affects measured protein backboneN spin relaxation rates Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 1 October 2011</br> Kang*Chen, Nico*Tjandra</br> Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses....
nmrlearner Journal club 0 10-02-2011 08:25 AM
[NMR tweet] Nuclear Magnetic Resonance and the Measurement of Spin-Spin ... http://bit.ly/fUIfX1
Nuclear Magnetic Resonance and the Measurement of Spin-Spin ... http://bit.ly/fUIfX1 Published by huvzcom (huvz.com) on 2011-04-26T03:16:29Z Source: Twitter
nmrlearner Twitter NMR 0 04-26-2011 03:31 AM
[NMR paper] 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic bindi
19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin. Related Articles 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin. Biochemistry. 1992 Aug 11;31(31):7069-76 Authors: Dubois BW, Evers AS This paper characterizes the low-affinity ligand binding interactions of a fluorinated volatile anesthetic, isoflurane (CHF2OCHClCF3), with bovine serum albumin...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:50 PM.


Map