BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-14-2006, 11:17 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default




Variability of the 15N Chemical Shielding Tensors in the B3 Domain of Protein G from 15N Relaxation Measurements at Several Fields. Implications for Backbone Order Parameters

Jennifer B. Hall and David Fushman


J. Am. Chem. Soc., 128 (24), 7855 -7870, 2006.


Contribution from the Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742


Abstract:

We applied a combination of 15N relaxation and CSA/dipolar cross-correlation measurements at five magnetic fields (9.4, 11.7, 14.1, 16.4, and 18.8 T) to determine the 15N chemical shielding tensors for backbone amides in protein G in solution. The data were analyzed using various model-independent approaches and those based on Lipari-Szabo approximation, all of them yielding similar results. The results indicate a range of site-specific values of the anisotropy (CSA) and orientation of the 15N chemical shielding tensor, similar to those in ubiquitin (Fushman, et al. J. Am. Chem. Soc. 1998, 120, 10947; J. Am. Chem. Soc. 1999, 121, 8577). Assuming a Gaussian distribution of the 15N CSA values, the mean anisotropy is -173.9 to -177.2 ppm (for 1.02 Å NH bond length) and the site-to-site CSA variability is ±17.6 to ±21.4 ppm, depending on the method used. This CSA variability is significantly larger than derived previously for ribonuclease H (Kroenke, et al. J. Am. Chem. Soc. 1999, 121, 10119) or recently, using "meta-analysis" for ubiquitin (Damberg, et al. J. Am. Chem. Soc. 2005, 127, 1995). Standard interpretation of 15N relaxation studies of backbone dynamics in proteins involves an a priori assumption of a uniform 15N CSA. We show that this assumption leads to a significant discrepancy between the order parameters obtained at different fields. Using the site-specific CSAs obtained from our study removes this discrepancy and allows simultaneous fit of relaxation data at all five fields to Lipari-Szabo spectral densities. These findings emphasize the necessity of taking into account the variability of 15N CSA for accurate analysis of protein dynamics from 15N relaxation measurements.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design.
Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Investigation of solvent effect and NMR shielding tensors of p53 tumor-suppressor gene in drug design. Int J Nanomedicine. 2011;6:213-8 Authors: Irani S, Monajjemi M, Honarparvar B, Atyabi S, Sadeghizadeh M Abstract The p53 tumor-suppressor gene encodes a nuclear phosphoprotein with cancer- inhibiting properties. The...
nmrlearner Journal club 0 08-25-2011 04:10 PM
Backbone resonance assignment and order tensor estimation using residual dipolar couplings
Backbone resonance assignment and order tensor estimation using residual dipolar couplings Abstract An NMR investigation of proteins with known X-ray structures is of interest in a number of endeavors. Performing these studies through nuclear magnetic resonance (NMR) requires the costly step of resonance assignment. The prevalent assignment strategy does not make use of existing structural information and requires uniform isotope labeling. Here we present a rapid and cost-effective method of assigning NMR data to an existing structureâ??either an X-ray or computationally modeled...
nmrlearner Journal club 0 06-15-2011 02:31 AM
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems Abstract The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological...
nmrlearner Journal club 0 03-03-2011 02:06 AM
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membra
Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Related Articles Site-specific (19)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protein Sci. 2010 Nov 15; Authors: Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C Site-specific (19)F chemical shift and side chain relaxation analysis can be applied on large size proteins. Here, one dimensional (19)F spectra and T(1), T(2) relaxation data were acquired...
nmrlearner Journal club 0 11-17-2010 05:49 PM
chemical shift anisotropy (CSA) in model-free approach
Hi ! I have a quite general question about the value used for the CSA while studying protein dynamics of 15N-1H vectors with model-free approach. In the litterature, we mainly find two values for the CSA (-160 and -172 ppm). There is, if I understand well, a link between the bond length and the CSA, but everyone seems to agree about using the same value of 1.02 A which should give rise to a mean S2 of 0.85 for secondary structure when combined to a CSA of -172 ppm. When using a CSA of -160 ppm, the mean S2 for secondary structure should slightly rise up from 0.85. The manuals for...
semor NMR Questions and Answers 1 09-29-2006 12:08 AM
Order tensor
Hello, I have some questions regarding the alignment matrix and I will be very much grateful if you could clarify my doubts. Question 1: 1) I like to calculate the angle between the magnetic field and X,Y & Z axes of the alignment frame. For that, I have run PALES and got the values for Sxx, Sxy, Sxz, Syy & Syz. From Sxx value I have calculated cos(tx) and cos(ty) from Syy. Substituting these values in 1/2(3cos(tx)*cos(ty)), I calculated Sxy. But, this calculated value does not match with Sxy obtained from PALES. Question 2: I found that the saupe parameters are in the order of 10...
tmc NMR Questions and Answers 1 08-11-2006 07:28 PM
Refinement against order parameter with XPLOR
New 2.10 release of XPLOR-NIH can now do a refinement against order parameters. You can get an idea what this refinement can be used for from the this paper. Info about new features of XPLOR-NIH 2.10 from XPLOR-NIH website: - new parameter/topology file naming convention: NMR protein refinement should now use topology file protein.top and parameter file protein.par. - new command: tclXplor which calls xplor -tcl. Can be used as command interpreter - new potential term OrderPot to enable refinement against order parameters. - update to PrePot from Junji Iwahara - CSAPot: 15N CSAs...
nmrlearner NMR structure calculation 0 05-16-2005 04:02 AM
CSA variation: how reliable model-free dynamics is
The following paper shows, in particular, how site-specific variations of 15N chemical shift anisotropy (CSA) can cause under- and overestimation of protein mobility that is inferred from the order parameter of model-free analysis. Limited variations in 15N CSA magnitudes and orientations in ubiquitin are revealed by joint analysis of longitudinal and transverse NMR relaxation. Damberg P, Jarvet J, Graslund A. Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusv.12, S-106 91 Stockholm, Sweden. J Am Chem Soc. 2005 Feb 16;127(6):1995-2005.
nmrlearner Journal club 0 03-12-2005 04:42 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:18 AM.


Map