BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-09-2018, 09:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Easy-to-Attach/Detach Solubilizing Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein

Easy-to-Attach/Detach Solubilizing Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein


A solubilizing "Trt-K10" tag was developed for the effective chemical preparation of peptides/proteins with low solubility. The Trt-K10 tag comprises a hydrophilic oligo-Lys sequence and a trityl anchor, and can be selectively introduced to a side chain thiol of Cys of deprotected peptides/proteins with a trityl alcohol-type introducing reagent "Trt(OH)-K10" under acidic conditions. Significantly, the ligation product in the reaction mixture of a thiol-additive-free native chemical ligation can be modified directly in a one-pot manner to facilitate the isolation of the product by high-performance liquid chromatography. Finally, the Trt-K10 tag can be readily removed with a standard trifluoroacetic acid cocktail. Using this easy-to-attach/detach tag-aided method, a hepatitis B virus capsid protein that is usually difficult to handle was synthesized successfully.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] P-B desulfurization: an enabling method for protein chemical synthesis and site-specific deuteration
P-B desulfurization: an enabling method for protein chemical synthesis and site-specific deuteration Native chemical ligation has provided a powerful tool for protein chemical synthesis. Herein, we report an unprecedented mild system (TCEP-NaBH4 or TCEP-LiBEt3H) for chemoselective peptide desulfurization to achieve effective protein synthesis via the native chemical ligation-desulfurization approach. This method, termed P-B desulfurization, features usage of common reagents, simplicity of operation, robustness, high yielding, clean conversion and versatile functionality compatibility...
nmrlearner Journal club 0 10-03-2017 03:24 AM
[NMR paper] Chemical Synthesis of the Highly Hydrophobic Antiviral Membrane Associated Protein IFITM3 and Modified Variants
Chemical Synthesis of the Highly Hydrophobic Antiviral Membrane Associated Protein IFITM3 and Modified Variants Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral transmembrane protein thought to serve as the primary factor for inhibiting replication of a large number of viruses, including the West Nile virus, the Dengue virus, the Ebola virus, and the Zika virus. Production of this 14.5 kDa, 133-residue, transmembrane protein, especially with essential posttranslational modifications by recombinant expression is challenging. In this report, we document the chemical...
nmrlearner Journal club 0 08-21-2017 02:23 PM
[NMR paper] Palladium in Chemical Protein Synthesis and Modifications
Palladium in Chemical Protein Synthesis and Modifications The field of site-specific modification of proteins has drawn significant attentions in recent years owing to its high importance in various research areas such as the development of novel therapeutics and understanding the biochemical and cellular behaviors of proteins. The presence of a large number of reactive functional groups in the protein of interest and in the cellular environment renders the particular modification at a specific site a highly challenging task. However, with the development of sophisticated...
nmrlearner Journal club 0 04-07-2017 02:01 AM
Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15 N or 13 Câ?² chemical shifts of multiple contiguous residues in highly resolved 3D spectra
Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15 N or 13 Câ?² chemical shifts of multiple contiguous residues in highly resolved 3D spectra Abstract Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings...
nmrlearner Journal club 0 01-12-2015 11:31 PM
[NMR paper] The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media.
The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media. Related Articles The Use of Amphipols for Solution NMR Studies of Membrane Proteins: Advantages and Constraints as Compared to Other Solubilizing Media. J Membr Biol. 2014 Mar 28; Authors: Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ Abstract Solution-state nuclear magnetic resonance studies of membrane proteins are...
nmrlearner Journal club 0 03-29-2014 01:00 PM
[NMR paper] CAMRA: chemical shift based computer aided protein NMR assignments.
CAMRA: chemical shift based computer aided protein NMR assignments. Related Articles CAMRA: chemical shift based computer aided protein NMR assignments. J Biomol NMR. 1998 Oct;12(3):395-405 Authors: Gronwald W, Willard L, Jellard T, Boyko RF, Rajarathnam K, Wishart DS, Sönnichsen FD, Sykes BD A suite of programs called CAMRA (Computer Aided Magnetic Resonance Assignment) has been developed for computer assisted residue-specific assignments of proteins. CAMRA consists of three units: ORB, CAPTURE and PROCESS. ORB predicts NMR chemical shifts...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attach
Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by 31P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation. Related Articles Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme A, shown by 31P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Computer-aided assignment of the 1H-NMR spectrum of the viral-protein-genome-linked p
Computer-aided assignment of the 1H-NMR spectrum of the viral-protein-genome-linked polypeptide from cowpea mosaic virus. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Computer-aided assignment of the 1H-NMR spectrum of the viral-protein-genome-linked polypeptide from cowpea mosaic virus. Eur J Biochem. 1990 Jul 5;190(3):583-91 Authors: van de Ven FJ, Lycksell PO, van Kammen A, Hilbers CW The 1H-NMR spectrum of the...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:21 PM.


Map