Related ArticlesThe Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation.
Molecules. 2020 Nov 24;25(23):
Authors: Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the C? sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 ?s (with one exception, where the trajectory length was 10 ?s) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
[NMR paper] Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
Related Articles Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
J Mol Biol. 2020 Jun 24;:
Authors: Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M
Abstract
HIV-1 entry into cells is mediated by the fusion protein gp41. Cholesterol plays an important...
nmrlearner
Journal club
0
06-28-2020 09:39 PM
[NMR paper] Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation.
Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation.
Chembiochem. 2017 Feb 16;18(4):396-401
...
nmrlearner
Journal club
0
07-05-2017 10:27 AM
[NMR paper] The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
J Biomol NMR. 2015 Jan 6;
Authors: Thomas L, Kahr J, Schmidt P, Krug U, Scheidt HA, Huster D
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic...
nmrlearner
Journal club
0
01-06-2015 07:59 PM
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptorsâ?? function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize...
nmrlearner
Journal club
0
01-05-2015 04:06 PM
[NMR paper] The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles The G-Protein-Coupled Neuropeptide Y Receptor Type 2 is Highly Dynamic in Lipid Membranes as Revealed by Solid-State NMR Spectroscopy.
Chemistry. 2014 Mar 13;
Authors: Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D
Abstract
nmrlearner
Journal club
0
03-14-2014 07:34 PM
[NMR paper] Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Proteins. 2013 Sep 2;
Authors: Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K
Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by...
nmrlearner
Journal club
0
09-04-2013 12:28 PM
[NMR paper] Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
Biophys J. 2012 Oct 17;103(8):1735-43
Authors: Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K,...
nmrlearner
Journal club
0
03-21-2013 02:58 PM
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Biophys J. 2010 Nov 17;99(10):3282-9
Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...