[NMR paper] Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Dynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Related ArticlesDynamics of the Intrinsically Disordered C-Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy.
Abstract
We provide an atomic-resolution description based on NMR spectroscopy, of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein (NTAIL ), both in its isolated state and within the nucleocapsid (NC). Within the NC the second half of NTAIL retains conformational behavior similar to that of isolated NTAIL , whereas the first half of NTAIL becomes much more rigid. In spite of the mostly disordered nature of NTAIL , chemical shifts and relaxation measurements show a significant degree of ?-helical sampling in the molecular recognition element (MoRE) involved in binding to the X domain (XD) of the phosphoprotein, with this preconfiguration being more pronounced than in the NTAIL domain from the cognate Hendra virus. Outside the MoRE, an additional region exhibiting reduced flexibility was identified within NTAIL and found to be involved in binding to the XD. (1) H- and (13) C-detected titration NMR experiments support a highly dynamic binding of NTAIL at the surface of the XD.
PMID: 25492314 [PubMed - as supplied by publisher]
[NMR paper] Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Chemistry. 2013 Aug 12;
Authors: Diana D, Smaldone G, De Antonellis P, Pirone L, Carotenuto M, Alonzi A, Di Gaetano S, Zollo M, Pedone EM, Fattorusso R
Abstract
Get well prune: The C-terminal third domain of h-prune is largely unfolded and involved in relevant protein-protein interactions, particularly with...
nmrlearner
Journal club
0
08-14-2013 05:24 PM
[NMR paper] NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein.
NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein.
Biophys J. 2013 Jul 16;105(2):481-93
Authors: Haba NY, Gross R, Novacek J, Shaked H, Zidek L, Barda-Saad M, Chill JH
Abstract
WASp-interacting protein (WIP) is a 503-residue...
nmrlearner
Journal club
0
07-23-2013 09:52 PM
NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein
NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein
Publication date: 16 July 2013
Source:Biophysical Journal, Volume 105, Issue 2</br>
Author(s): Noam Y. Haba , Renana Gross , Jiri Novacek , Hadassa Shaked , Lukas Zidek , Mira Barda-Saad , Jordan*H. Chill</br>
WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T*cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp...
nmrlearner
Journal club
0
07-16-2013 09:04 PM
[NMR paper] Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Related Articles Multi-phosphorylation of the Intrinsically Disordered Unique Domain of c-Src Studied by In-Cell and Real-Time NMR Spectroscopy.
Chembiochem. 2013 Jun 6;
Authors: Amata I, Maffei M, Igea A, Gay M, Vilaseca M, Nebreda AR, Pons M
Abstract
Intrinsically disordered regions (IDRs) are preferred sites for post-translational modifications essential for regulating protein function. The enhanced local...
nmrlearner
Journal club
0
06-08-2013 02:18 PM
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Quantitative Analysisof Multisite Protein–LigandInteractions by NMR: Binding of Intrinsically Disordered p53 TransactivationSubdomains with the TAZ2 Domain of CBP
Munehito Arai, Josephine C. Ferreon and Peter E. Wright
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209936u/aop/images/medium/ja-2011-09936u_0012.gif
Journal of the American Chemical Society
DOI: 10.1021/ja209936u
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/ak4BxkITHl8
nmrlearner
Journal club
0
02-16-2012 05:24 AM
Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3.
Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3.
Backbone and side chain NMR assignments for the intrinsically disordered cytoplasmic domain of human neuroligin-3.
Biomol NMR Assign. 2011 Jun 7;
Authors: Wood K, Paz A, Dijkstra K, Scheek RM, Otten R, Silman I, Sussman JL, Mulder FA
Neuroligins act as heterophilic adhesion molecules at neuronal synapses. Their cytoplasmic domains interact with synaptic scaffolding proteins, and have been shown to be intrinsically disordered. Here we...