Abstract
We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298-80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations,¬¬ dominating at low temperatures. The relaxation is non-exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. B 2013, 117, 6129-6137), suggests that the hydrophobic core undergoes slow concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in softening the core and highlights aromatic residues as markers of the protein dynamical transitions.
PMID: 26529128 [PubMed - as supplied by publisher]
[NMR paper] (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.
(15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.
(15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.
J Magn Reson. 2015 Sep 3;259:225-231
Authors: Vugmeyster L, Ostrovsky D, Fu R
Abstract
In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in...
nmrlearner
Journal club
0
09-15-2015 11:12 AM
15N CSA Tensors and 15N-1H Dipolar Couplings of Protein Hydrophobic Core Residues Investigated by Static Solid-State NMR
15N CSA Tensors and 15N-1H Dipolar Couplings of Protein Hydrophobic Core Residues Investigated by Static Solid-State NMR
Publication date: Available online 3 September 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Liliya Vugmeyster, Dmitry Ostrovsky, Riqiang Fu</br>
In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein...
nmrlearner
Journal club
0
09-03-2015 09:53 PM
[NMR paper] Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Related Articles Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state NMR.
Biochemistry. 2014 Oct 3;
Authors: Hoop CL, Lin HK, Kar K, Hou Z, Poirier MA, Wetzel R, van der Wel PC
Abstract
In Huntington's Disease (HD), expansion of a polyglutamine (polyQ) domain in the huntingtin (htt) protein leads to misfolding and aggregation....
nmrlearner
Journal club
0
10-04-2014 05:16 PM
A Studyof Phenylalanine Side-Chain Dynamics in Surface-AdsorbedPeptides Using Solid-State Deuterium NMR and Rotamer Library Statistics
A Studyof Phenylalanine Side-Chain Dynamics in Surface-AdsorbedPeptides Using Solid-State Deuterium NMR and Rotamer Library Statistics
Kun Li, Prashant S. Emani, Jason Ash, Michael Groves and Gary P. Drobny
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja504677d/aop/images/medium/ja-2014-04677d_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja504677d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/d2WMAZNh-I4
nmrlearner
Journal club
0
08-06-2014 07:59 AM
[NMR paper] A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
A Study of Phenylalanine Side Chain Dynamics in Surface-Adsorbed Peptides Using Solid State Deuterium NMR and Rotamer Library Statistics.
J Am Chem Soc. 2014 Jul 23;
Authors: Li K, Emani PS, Ash J, Groves M, Drobny GP
Abstract
Extracellular matrix proteins adsorbed onto mineral surfaces exist in a unique environment where the structure and dynamics of the protein can be altered...
nmrlearner
Journal club
0
07-24-2014 11:56 AM
[NMR paper] Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.
Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.
Related Articles Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR.
J Am Chem Soc. 2014 Jan 27;
Authors: Good DB, Wang S, Ward ME, Struppe JO, Brown LS, Lewandowski JR, Ladizhansky V
Abstract
The ability to detect and characterize molecular motions represents one of the unique strengths of Nuclear Magnetic Resonance (NMR) spectroscopy. In this study we...
nmrlearner
Journal club
0
01-29-2014 02:01 PM
[NMR paper] Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.
Proteins. 2013 Sep 2;
Authors: Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K
Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by...
nmrlearner
Journal club
0
09-04-2013 12:28 PM
[NMR paper] NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins.
NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins.
Related Articles NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins.
J Am Chem Soc. 2005 Sep 14;127(36):12620-6
Authors: Torizawa T, Ono AM, Terauchi T, Kainosho M
The unambiguous assignment of the aromatic ring resonances in proteins has been severely hampered by the inherently poor sensitivities of the currently available methodologies developed for uniformly 13C/15N-labeled...