Dynamics of heme in hemoproteins: proton NMR study of myoglobin reconstituted with iron 3-ethyl-2-methylporphyrin.
Biochim Biophys Acta. 2011 May 6;
Authors: Juillard S, Chevance S, Bondon A, Simonneaux G
The asymmetric 3-ethyl-2-methylporphyrin iron complex was synthetized and inserted into apomyoglobin. UV-visible spectroscopic studies demonstrated the capacity of iron to coordinate different exogenous axial ligands in ferrous and ferric forms. The position of synthetic heme into the hydrophobic pocket of the reconstituted myoglobin was investigated by ((1))H NMR spectroscopy. In absence of exogenous ligand, signals of the synthetic prosthetic group were not detected, suggesting a rotational disorder of the synthetic porphyrin into the heme pocket. This direct interconversion behavior is favored since site-specific interactions between the poorly substituted heme and protein in the chiral hydrophobic cavity were weak. Complexion of cyanide to the iron allowed to quench partially the heme reorientation and two interconvertible forms, around the meso-C?-C? axis, were detected in solution.
PMID: 21600316 [PubMed - as supplied by publisher]
[NMR paper] Proton NMR study of the heme environment in bacterial quinol oxidases.
Proton NMR study of the heme environment in bacterial quinol oxidases.
Related Articles Proton NMR study of the heme environment in bacterial quinol oxidases.
Arch Biochem Biophys. 2004 Jan 15;421(2):186-91
Authors: Zhang J, Osborne JP, Gennis RB, Wang X
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] 1H NMR structure of the heme pocket of HNO-myoglobin.
1H NMR structure of the heme pocket of HNO-myoglobin.
Related Articles 1H NMR structure of the heme pocket of HNO-myoglobin.
J Biol Inorg Chem. 2003 Feb;8(3):348-52
Authors: Sulc F, Fleischer E, Farmer PJ, Ma D, La Mar GN
The unique (1)H NMR signal of nitrosyl hydride at 14.8 ppm is used to obtain a solution structure of the distal pocket of Mb-HNO, a rare nitroxyl adduct with a half-life of several months at room temperature. (1)H NMR, NOESY and TOCSY data were obtained under identical experimental conditions on solutions of the diamagnetic...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Proton NMR study of the heme complex of hemopexin.
Proton NMR study of the heme complex of hemopexin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Proton NMR study of the heme complex of hemopexin.
Biochim Biophys Acta. 1994 Jul 6;1200(2):161-6
Authors: Deeb RS, Muller-Eberhard U, Peyton DH
Proton nuclear magnetic resonance spectroscopy of the complex of heme with hemopexin, a plasma protein with an exceptionally high affinity for heme, is reported. Characteristic spectra are shown for heme.hemopexin of cow, human,...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.
1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of reduced heme proteins myoglobin and cytochrome P450.
Eur J Biochem. 1993 Jul 15;215(2):431-7
Authors: Banci L, Bertini I, Marconi S, Pierattelli R
The 1H-NMR spectra of deoxymyoglobin and reduced cytochrome P450 are analyzed by NOE spectroscopy. Progress has been made in the assignment of the...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5.
Biochemistry. 1991 Feb 19;30(7):1878-87
Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] Characterization by NMR of the heme-myoglobin adduct formed during the reductive meta
Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group.
Related Articles Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group.
J Biol Chem. 1991 Feb 15;266(5):3208-14
Authors: Osawa Y, Highet RJ, Bax A, Pohl LR
The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorh
1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus.
Eur J Biochem. 1990 May 20;189(3):567-73
Authors: Yamamoto Y, Inoue Y, Chûjô R, Suzuki T
Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme...
nmrlearner
Journal club
0
08-21-2010 10:48 PM
(2)H NMR study of the water dynamics in hydrated myoglobin.
(2)H NMR study of the water dynamics in hydrated myoglobin.
Related Articles (2)H NMR study of the water dynamics in hydrated myoglobin.
J Phys Chem B. 2010 Aug 12;114(31):10209-16
Authors: Lusceac SA, Vogel M
We use 1D and 2D (2)H NMR to study the temperature-dependent mechanism for the rotational motion of myoglobin hydration water. The results show that isotropic and anisotropic water reorientation is observed at high and low temperatures, respectively, with a continuous crossover in the temperature range of 200-230 K. The anisotropic...