BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-30-2020, 05:28 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution NMR.

Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution NMR.

Dynamics of Bacteriorhodopsin in the Dark-Adapted State from Solution NMR.

Angew Chem Int Ed Engl. 2020 Jul 29;:

Authors: Kooijman L, Schuster M, Baumann C, Jurt S, Löhr F, Fürtig B, Güntert P, Zerbe O

Abstract
To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin, the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well-ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10% residual proton pumping activity, are less well ordered suggesting a link between side chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR.


PMID: 32726501 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy.
Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy. Related Articles Interactions of IDPs with Membranes Using Dark-State Exchange NMR Spectroscopy. Methods Mol Biol. 2020;2141:585-608 Authors: Das T, Acosta D, Eliezer D Abstract Membrane interactions of proteins play a role in essential cellular processes in both physiological and disease states. The structural flexibility of intrinsically disordered proteins (IDPs) allows for interactions with multiple partners, including membranes. However,...
nmrlearner Journal club 0 07-23-2020 11:23 PM
[NMR paper] Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers.
Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers. Motion-adapted pulse sequences for oriented sample (OS) solid-state NMR of biopolymers. J Chem Phys. 2013 Aug 28;139(8):084203 Authors: Lu GJ, Opella SJ Abstract One of the main applications of solid-state NMR is to study the structure and dynamics of biopolymers, such as membrane proteins, under physiological conditions where the polypeptides undergo global motions as they do in biological membranes. The effects of NMR radiofrequency irradiations on...
nmrlearner Journal club 0 09-07-2013 09:54 PM
[NMR paper] Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Proc Natl Acad Sci U S A. 2013 Jun 24; Authors: Libich DS, Fawzi NL, Ying J, Clore GM Abstract
nmrlearner Journal club 0 06-27-2013 02:10 PM
[NMR paper] Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation o
Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Related Articles Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Biochemistry. 2000 Nov 28;39(47):14472-80 Authors: Kawase Y, Tanio M, Kira A, Yamaguchi S, Tuzi S, Naito A, Kataoka M, Lanyi JK, Needleman R, Saitô H According to previous X-ray diffraction studies, the D85N mutant of...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR.
Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Related Articles Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Biochim Biophys Acta. 2000 Aug 30;1460(1):39-48 Authors: Saitô H, Tuzi S, Yamaguchi S, Tanio M, Naito A It is demonstrated here how the secondary structure and dynamics of transmembrane helices, as well as surface residues, such as interhelical loops and N- or C-terminus of bacteriorhodopsin (bR) in purple membrane, can be determined at ambient temperature based on very...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhod
Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Related Articles Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Biochemistry. 2000 Aug 22;39(33):10066-71 Authors: Helmle M, Patzelt H, Ockenfels A, Gärtner W, Oesterhelt D, Bechinger B The bacterial proton pump bacteriorhodopsin (BR) is a 26.5 kDa seven-transmembrane helical protein. Several...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Solid-state 13C-NMR of [(3-13C)Pro]bacteriorhodopsin and [(4-13C)Pro]bacteriorhodopsi
Solid-state 13C-NMR of bacteriorhodopsin and bacteriorhodopsin: evidence for a flexible segment of the C-terminal tail. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Solid-state 13C-NMR of bacteriorhodopsin and bacteriorhodopsin: evidence for a flexible segment of the C-terminal tail. Eur J Biochem. 1996 Feb 1;235(3):526-33 Authors: Engelhard M, Finkler S, Metz G, Siebert F The configuration of an Xaa-Pro bond can be determined...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin.
Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Related Articles Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Biochemistry. 1990 Jun 12;29(23):5567-74 Authors: Herzfeld J, Das Gupta SK, Farrar MR, Harbison GS, McDermott AE, Pelletier SL, Raleigh DP, Smith SO, Winkel C, Lugtenburg J Solid-state 13C MAS NMR spectra were obtained for dark-adapted bacteriorhodopsin (bR) labeled with Tyr. Difference spectra (labeled minus natural abundance) taken at pH values between 2 and...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:20 AM.


Map