Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy.
Proc Natl Acad Sci U S A. 2011 Apr 6;
Authors: Masterson LR, Shi L, Metcalfe E, Gao J, Taylor SS, Veglia G
Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these conformational states are minimal and allosteric dynamics encode the motions from one state to the next. NMR and molecular dynamics simulations define the energy landscape of PKA-C, with the substrate allowing the enzyme to adopt a broad distribution of conformations (dynamically committed state) and the inhibitors (high magnesium and pseudosubstrate) locking it into discrete minima (dynamically quenched state), thereby reducing the motions that allow turnover. These results unveil the role of internal dynamics in both kinase function and regulation.
PMID: 21471451 [PubMed - as supplied by publisher]
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy [Biophysics and Computational Biology]
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy
Masterson, L. R., Shi, L., Metcalfe, E., Gao, J., Taylor, S. S., Veglia, G....
Date: 2011-04-26
Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these...
nmrlearner
Journal club
0
04-27-2011 04:16 AM
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
J Biomol NMR. 2011 Mar 18;
Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE
A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner
Journal club
0
03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
Biochemistry. 1997 Jan 28;36(4):699-710
Authors: Zhou H, Dahlquist FW
Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
Biochemistry. 1997 Jan 28;36(4):699-710
Authors: Zhou H, Dahlquist FW
Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Exploring the DNA binding domain of gene V protein encoded by bacteriophage M13 with
Exploring the DNA binding domain of gene V protein encoded by bacteriophage M13 with the aid of spin-labeled oligonucleotides in combination with 1H-NMR.
Related Articles Exploring the DNA binding domain of gene V protein encoded by bacteriophage M13 with the aid of spin-labeled oligonucleotides in combination with 1H-NMR.
Biochemistry. 1993 Sep 14;32(36):9407-16
Authors: Folkers PJ, van Duynhoven JP, van Lieshout HT, Harmsen BJ, van Boom JH, Tesser GI, Konings RN, Hilbers CW
The DNA binding domain of the single-stranded DNA binding protein...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] The molecular basis for protein kinase A anchoring revealed by solution NMR.
The molecular basis for protein kinase A anchoring revealed by solution NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nsb.gif Related Articles The molecular basis for protein kinase A anchoring revealed by solution NMR.
Nat Struct Biol. 1999 Mar;6(3):222-7
Authors: Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA
Compartmentalization of signal transduction enzymes into signaling complexes is an important mechanism to ensure the specificity of intracellular events. Formation of...
nmrlearner
Journal club
0
08-21-2010 04:03 PM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay
Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120
Abstract:
Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...