[NMR paper] Dynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation.
Related ArticlesDynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation.
J Phys Chem B. 2017 03 02;121(8):1802-1811
Authors: Norisada K, Javkhlantugs N, Mishima D, Kawamura I, Saitô H, Ueda K, Naito A
Abstract
Melittin is a venom peptide that disrupts lipid bilayers at temperatures below the liquid-crystalline to gel phase transition temperature (Tc). Notably, the ability of melittin to disrupt acidic dimyristoylphosphatidylglycerol (DMPG) bilayers was weaker than its ability to disrupt neutral dimyristoylphosphatidylcholine bilayers. The structure and orientation of melittin bound to DMPG bilayers were revealed by analyzing the 13C chemical shift anisotropy of [1-13C]-labeled melittin obtained from solid-state 13C NMR spectra. 13C chemical shift anisotropy showed oscillatory shifts with the index number of residues. Analysis of the chemical shift oscillation properties indicated that melittin bound to a DMPG membrane adopts a bent ?-helical structure with tilt angles for the N- and C-terminal helices of -32 and +30°, respectively. The transmembrane melittin in DMPG bilayers indicates that the peptide protrudes toward the C-terminal direction from the core region of the lipid bilayer to show a pseudotransmembrane bent ?-helix. Molecular dynamics simulation was performed to characterize the structure and interaction of melittin with lipid molecules in DMPG bilayers. The simulation results indicate that basic amino acid residues in melittin interact strongly with lipid head groups to generate a pseudo-transmembrane alignment. The N-terminus is located within the lipid core region and disturbs the lower surface of the lipid bilayer.
[NMR paper] Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR.
Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR.
Related Articles Orientation and Location of the Cyclotide Kalata B1 in Lipid Bilayers Revealed by Solid-State NMR.
Biophys J. 2017 Feb 28;112(4):630-642
Authors: Grage SL, Sani MA, Cheneval O, Henriques ST, Schalck C, Heinzmann R, Mylne JS, Mykhailiuk PK, Afonin S, Komarov IV, Separovic F, Craik DJ, Ulrich AS
Abstract
Cyclotides are ultra-stable cyclic disulfide-rich peptides from plants. Their biophysical effects and medically...
nmrlearner
Journal club
0
03-04-2017 12:19 PM
MembraneInsertion of a Dinuclear Polypyridylruthenium(II)Complex Revealed by Solid-State NMR and Molecular Dynamics Simulation:Implications for Selective Antibacterial Activity
MembraneInsertion of a Dinuclear Polypyridylruthenium(II)Complex Revealed by Solid-State NMR and Molecular Dynamics Simulation:Implications for Selective Antibacterial Activity
Daniel K. Weber, Marc-Antoine Sani, Matthew T. Downton, Frances Separovic, F. Richard Keene and J. Grant Collins
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b09996/20161109/images/medium/ja-2016-099965_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.6b09996
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
11-19-2016 08:35 PM
[NMR paper] Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
Biophys J. 2012 Oct 17;103(8):1735-43
Authors: Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K,...
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
J Am Chem Soc. 2011 Mar 14;
Authors: Yang J, Aslimovska L, Glaubitz C
Environmental factors such as temperature, hydration, and lipid bilayer properties are tightly coupled to the dynamics of membrane proteins. So far, site-resolved data visualizing the protein's response to alterations in these factors are rare, and conclusions had to be drawn from dynamic data averaged over the whole protein...
nmrlearner
Journal club
0
03-16-2011 04:15 PM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Jun Yang, Lubica Aslimovska and Clemens Glaubitz
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109766n/aop/images/medium/ja-2010-09766n_0011.gif
Journal of the American Chemical Society
DOI: 10.1021/ja109766n
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/VmNlca5pCIw
nmrlearner
Journal club
0
03-15-2011 05:56 AM
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Biophys J. 2010 Nov 17;99(10):3282-9
Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...