Publication date: Available online 23 July 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy
Author(s): Aany Sofia Lilly Thankamony, Johannes J. Wittmann, Monu Kaushik, Björn Corzilius
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we will provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we will cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, that underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields. Edited by Geoffrey Bodenhausen and Beat Meier Graphical abstract
Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen
From The DNP-NMR Blog:
Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen
Le, D., et al., Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen. Macromol Rapid Commun, 2015: p. n/a-n/a.
http://www.ncbi.nlm.nih.gov/pubmed/26010134
nmrlearner
News from NMR blogs
0
06-26-2015 09:55 PM
[NMR paper] Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.
J Magn Reson. 2015 Apr 28;256:14-22
Authors: Koroloff SN, Nevzorov AA
Abstract
Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing...
nmrlearner
Journal club
0
05-13-2015 02:01 PM
[NMR paper] Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles
Publication date: Available online 28 April 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Sophie N. Koroloff , Alexander A. Nevzorov</br>
Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from...
nmrlearner
Journal club
0
04-28-2015 12:40 PM
[NMR paper] Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
J Am Chem Soc. 2013 Apr 3;135(13):5105-10
Authors: Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S
Abstract
...
nmrlearner
Journal club
0
10-14-2014 09:48 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog:
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62.
http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner
News from NMR blogs
0
04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog:
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62.
http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner
News from NMR blogs
0
04-15-2013 08:52 AM
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
From the The DNP-NMR Blog:
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
Takahashi, H., et al., Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2013.
http://dx.doi.org/10.1021/ja312501d
Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate...