BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:25 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site

Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.

Related Articles Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR.

Solid State Nucl Magn Reson. 2004 Jan;25(1-3):5-14

Authors: Saitô H, Yamaguchi S, Okuda H, Shiraishi A, Tuzi S

We demonstrate here a general feature of dynamic aspect of membrane proteins as revealed by site-directed 13C NMR studies on bacteriorhodopsin (bR) as a typical membrane protein and a variety of mutants at ambient temperature. 13C NMR signals of [3-13C]Ala- or [1-13C]Val-labeled proteins were assigned regio-specifically with reference to the data of the conformation-dependent 13C chemical shifts from model polypeptides, followed by site-specific assignment based on site-directed mutants. Revealed picture of membrane protein at ambient temperature is not static in contrast to anticipation from crystalline structures but flexible enough to undergo a variety of local fluctuations with frequencies from 10(2) to 10(8)Hz, as pointed out already. This picture was further refined by taking into account of residue-specific dynamics of interfacial domains between the surface and inner part of the transmembrane helices and conformational fluctuation induced by the presence of a kinked structure. The residue-specific dynamics of the former was revealed by observation of broadened or suppressed peaks from the interfacial domains caused by acquisition of internal fluctuation motions interfered with frequencies of proton decoupling or magic angle spinning. The presence of such suppressed peaks due to molecular fluctuations in the interfacial domains was further confirmed by insensitivity of the peak-intensities from the interfacial domains in spite of the presence of accelerated relaxation rate to nearby residues from surface bound Mn2+ ion. Further, conformational change of the transmembrane alpha-helix F due to a plausible kinked structure at Pro 186 was confirmed in view of specific displacements of Ala 184 and Val 187 13C NMR peaks from chemically synthesized [3-13C]Ala(184)-, [1-13C]Val(187)-labeled wild type and P186L mutant of transmembrane fragment F(164-194) incorporated into lipid bilayer. It is emphasized that the observed displacement of [3-13C]-labeled Ala 184 peak at 17.4 ppm in the presence of kinked structure in this model peptide is consistent with that of intact protein at 17.27 ppm.

PMID: 14698378 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J. 2010 Nov 17;99(10):3282-9 Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...
nmrlearner Journal club 0 03-03-2011 12:34 PM
[NMR paper] 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by sol
'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR. Related Articles 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR. Magn Reson Chem. 2004 Feb;42(2):195-203 Authors: Afonin S, Dürr UH, Glaser RW, Ulrich AS Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR.
Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Related Articles Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Biochim Biophys Acta. 2000 Aug 30;1460(1):39-48 Authors: Saitô H, Tuzi S, Yamaguchi S, Tanio M, Naito A It is demonstrated here how the secondary structure and dynamics of transmembrane helices, as well as surface residues, such as interhelical loops and N- or C-terminus of bacteriorhodopsin (bR) in purple membrane, can be determined at ambient temperature based on very...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] The dynamic properties of the M121H azurin metal site as studied by NMR of the parama
The dynamic properties of the M121H azurin metal site as studied by NMR of the paramagnetic Cu(II) and Co(II) metalloderivatives. Related Articles The dynamic properties of the M121H azurin metal site as studied by NMR of the paramagnetic Cu(II) and Co(II) metalloderivatives. J Biol Chem. 1998 Jan 2;273(1):177-85 Authors: Salgado J, Kroes SJ, Berg A, Moratal JM, Canters GW The M121H azurin mutant in solution presents various species in equilibrium that can be detected and studied by 1H NMR of the Cu(II) and Co(II) paramagnetic...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. Biochemistry. 1997 Jan 28;36(4):699-710 Authors: Zhou H, Dahlquist FW Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. Biochemistry. 1997 Jan 28;36(4):699-710 Authors: Zhou H, Dahlquist FW Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies
NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR analysis of site-specific ligand binding in oligomeric proteins. Dynamic studies on the interaction of riboflavin synthase with trifluoromethyl-substituted intermediates. Biochemistry. 1996 Jul 30;35(30):9637-46 Authors: Scheuring J, Fischer M, Cushman M, Lee J, Bacher A,...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Rotational resonance NMR study of the active site structure in bacteriorhodopsin: con
Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Related Articles Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry. 1992 Sep 1;31(34):7931-8 Authors: Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:55 PM.


Map