BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR

Rate This Paper:

Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-01-2016, 11:08 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,794
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

Magn Reson Chem. 2016 May 31;

Authors: Bajd F, Gradišek A, Apih T, Serša I

Abstract
Fast field cycling (FFC) and quantitative magnetization transfer (qMT) NMR methods are two powerful tools in NMR analysis of biological tissues. The qMT method is well established in biomedical NMR applications, while the FFC method is often used in investigations of molecular dynamics on which longitudinal NMR relaxation times of the investigated material critically depend. Despite their proven analytical potential, these two methods were rarely used in NMR studies of food, especially when combined together. In our study, we demonstrate the feasibility of a combined FFC/qMT-NMR approach for the fast and nondestructive characterization of dry-curing ham tissues differing by protein content. The characterization is based on quantifying the pure quadrupolar peak area (area under the quadrupolar contribution of dispersion curve obtained by FFC-NMR) and the restricted magnetization pool size (obtained by qMT-NMR). Both quantities correlate well with concentration of partially immobilized, nitrogen-containing and proton magnetization exchanging muscle proteins. Therefore, these two quantities could serve as potential markers for dry-curing process monitoring. Copyright © 2016 John Wiley & Sons, Ltd.


PMID: 27242097 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] New applications and perspectives of fast field cycling NMR relaxometry.
New applications and perspectives of fast field cycling NMR relaxometry. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles New applications and perspectives of fast field cycling NMR relaxometry. Magn Reson Chem. 2015 Apr 9; Authors: Steele RM, Korb JP, Ferrante G, Bubici S Abstract The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of...
nmrlearner Journal club 0 04-11-2015 12:04 AM
Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization
From The DNP-NMR Blog: Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization Neudert, O., et al., Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization. Microporous and Mesoporous Materials, 2015. 205(0): p. 70-74. http://www.sciencedirect.com/science/article/pii/S1387181114003941
nmrlearner News from NMR blogs 0 04-06-2015 02:58 PM
Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications
Solid State Field-Cycling NMR Relaxometry: Instrumental Improvements and New Applications Publication date: Available online 28 September 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Franz Fujara , Danuta Kruk , Alexei F. Privalov</br> The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15 years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development...
nmrlearner Journal club 0 09-29-2014 09:33 AM
[NMR paper] Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry. Related Articles Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry. Phys Chem Chem Phys. 2013 Aug 22; Authors: Hsieh CJ, Chen YW, Hwang DW Abstract Biological membranes are complex structures composed of various lipids and proteins. Different membrane compositions affect viscoelastic and hydrodynamic properties of membranes, which are critical to their functions. Lipid bilayer vesicles...
nmrlearner Journal club 0 08-24-2013 04:53 PM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers May 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 63</br> </br> Graphical abstract
nmrlearner Journal club 0 12-15-2012 09:51 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers May 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 63</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> D. Kruk, A. Herrmann, E.A. Rössler</br> Graphical Abstract http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000586-fx1.jpg Graphical abstract Highlights
nmrlearner Journal club 0 03-09-2012 09:16 AM
Field-cycling NMR relaxometry of viscous liquids and polymers
Field-cycling NMR relaxometry of viscous liquids and polymers Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 27 August 2011</br> D., Kruk , A., Herrmann , E.A., Rössler</br> Graphical abstract *Graphical abstract:**Highlights:*? NMR relaxometry compared with DQ NMR, dielectric spectroscopy and light scattering ? Applying susceptibility representation and frequency-temperature superposition ? Liquids: Intra- & intermolecular relaxation give rotational & translational correlation times ? Polymers:...
nmrlearner Journal club 0 08-29-2011 06:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:52 PM.


Map