BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-30-2011, 08:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media?

Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media?


Abstract Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domainā??domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domainā??domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.

  • Content Type Journal Article
  • Category Article
  • Pages 131-150
  • DOI 10.1007/s10858-011-9548-7
  • Authors
    • Tairan Yuwen, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
    • Carol Beth Post, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
    • Nikolai R. Skrynnikov, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA


Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media Abstract The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR...
nmrlearner Journal club 0 02-21-2012 03:40 AM
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins.
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins. Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins. J Am Chem Soc. 2011 Feb 2; Authors: Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the...
nmrlearner Journal club 0 02-04-2011 11:34 AM
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins
Paramagnetic-Based NMR Restraints Lift Residual Dipolar Coupling Degeneracy in Multidomain Detergent-Solubilized Membrane Proteins Lei Shi, Nathaniel J. Traaseth, Raffaello Verardi, Martin Gustavsson, Jiali Gao and Gianluigi Veglia http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109080t/aop/images/medium/ja-2010-09080t_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja109080t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Tu9H79dfKCk
nmrlearner Journal club 0 02-03-2011 06:45 AM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol. 2003 Apr 11;327(5):1121-33 Authors: Tugarinov V, Kay LE A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner Journal club 0 11-24-2010 09:01 PM
NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats.
NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Related Articles NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats. Biophys J. 2010 Oct 20;99(8):2636-46 Authors: Walsh JD, Meier K, Ishima R, Gronenborn AM Modular proteins contain individual domains that are often connected by flexible, unstructured linkers. Using a model system based on the GB1 domain, we constructed tandem repeat proteins and investigated the rotational diffusion and long-range angular ordering behavior of individual domains by measuring...
nmrlearner Journal club 0 10-22-2010 06:02 AM
Nuclear Spin Relaxation in Isotropic and Anisotropic Media
Nuclear Spin Relaxation in Isotropic and Anisotropic Media Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 29 April 2010</br> Matthew P., Nicholas , Ertan, Eryilmaz , Fabien, Ferrage , David, Cowburn , Ranajeet, Ghose</br> We present a unified framework to describe nuclear spin relaxation in isotropic and anisotropic solutions for single-domain diffusers. All expressions, diffusion and net spin-relaxation theory are derived ab initio. Complete analytical expressions are provided wherever...
nmrlearner Journal club 0 08-16-2010 03:50 AM
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media
De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media Ke Ruan, Kathryn B. Briggman and Joel R. Tolman Journal of Biomolecular NMR; 2008; 41(2) pp 61 - 76 Abstract: The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to...
daniel Journal club 0 08-03-2008 03:54 AM
Composite Alignment Media for the Measurement of Independent Sets of NMR Residual Dipolar Couplings
Composite Alignment Media for the Measurement of Independent Sets of NMR Residual Dipolar Couplings Ke Ruan and Joel R. Tolman J. Am. Chem. Soc.; 2005; 127(43) pp 15032 - 15033; Abstract: The measurement of independent sets of NMR residual dipolar couplings (RDCs) in multiple alignment media can provide a detailed view of biomolecular structure and dynamics, yet remains experimentally challenging. It is demonstrated here that independent sets of RDCs can be measured for ubiquitin using just a single alignment medium composed of aligned bacteriophage Pf1 particles embedded in a...
nmrlearner Proteins 0 10-26-2005 08:46 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:03 PM.


Map