BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-31-2015, 07:17 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using (31)P Solid-State NMR Spectroscopy.

Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using (31)P Solid-State NMR Spectroscopy.

Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using (31)P Solid-State NMR Spectroscopy.

J Phys Chem B. 2015 Mar 27;

Authors: Yang Y, Yao H, Hong M

Abstract
Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology.


PMID: 25815701 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR.
Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR. Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR. Biophys J. 2015 Jan 6;108(1):5-9 Authors: Marek A, Tang W, Milikisiyants S, Nevzorov AA, Smirnov AI Abstract Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80*nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced...
nmrlearner Journal club 0 01-08-2015 01:29 PM
Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy
Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy Abstract Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy.
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy. Related Articles Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy. Biochim Biophys Acta. 2014 May 13; Authors: Banigan JR, Gayen A, Traaseth NJ Abstract Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid...
nmrlearner Journal club 0 05-20-2014 11:10 PM
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy Publication date: Available online 13 May 2014 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes</br> Author(s): James R. Banigan , Anindita Gayen , Nathaniel J. Traaseth</br> Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational...
nmrlearner Journal club 0 05-14-2014 04:50 AM
[NMR paper] Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd(3+)-complexes for solid-state NMR spectroscopy.
Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd(3+)-complexes for solid-state NMR spectroscopy. Related Articles Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd(3+)-complexes for solid-state NMR spectroscopy. J Biomol NMR. 2013 Dec 4; Authors: Ullrich SJ, Hölper S, Glaubitz C Abstract A considerable limitation of NMR spectroscopy is its inherent low sensitivity. Approximately 90*% of the measuring time is used by the spin system to return to its Boltzmann equilibrium after excitation, which is...
nmrlearner Journal club 0 12-07-2013 01:00 PM
[NMR paper] Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.
Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods. 2013 Sep 8; Authors: Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V Abstract Determination of structure of integral membrane proteins, especially in their native environment, is a formidable challenge in structural biology. Here we demonstrate that magic angle spinning...
nmrlearner Journal club 0 09-10-2013 08:44 PM
[NMR paper] Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy.
Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. J Biomol NMR. 2013 Aug 21; Authors: Mote KR, Gopinath T, Veglia G Abstract The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy...
nmrlearner Journal club 0 08-23-2013 01:07 AM
Solid-state (2)h NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation.
Solid-state (2)h NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Solid-state (2)h NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J. 2011 Jan 5;100(1):98-107 Authors: Mallikarjunaiah KJ, Leftin A, Kinnun JJ, Justice MJ, Rogozea AL, Petrache HI, Brown MF Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein...
nmrlearner Journal club 0 12-31-2010 07:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:59 PM.


Map