BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dissecting structural and electrostatic interactions of charged groups in alpha-sarci

Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.

Related Articles Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.

Biochemistry. 2003 Nov 18;42(45):13122-33

Authors: García-Mayoral MF, Pérez-Cañadillas JM, Santoro J, Ibarra-Molero B, Sanchez-Ruiz JM, Lacadena J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M

The cytotoxic ribonuclease alpha-sarcin is the best characterized member of the ribotoxin family. Ribotoxins share a common structural core, catalytic residues, and active site topology with members of the broader family of nontoxic microbial extracellular RNases. They are, however, much more specific in their biological action. To shed light on the highly specific alpha-sarcin activity, we have evaluated the structural and electrostatic interactions of its charged groups, by combining the structural and pK(a) characterization by NMR of several variants with theoretical calculations based on the Tanford-Kirkwood and Poisson-Boltzmann models. The NMR data reveal that the global conformation of wild-type alpha-sarcin is preserved in the H50Q, E96Q, H137Q, and H50/137Q variants, and that His137 is involved in an H-bond that is crucial in maintaining the active site structure and in reinforcing the stability of the enzyme. The loss of this H-bond in the H137Q and H50/137Q variants modifies the local structure of the active site. The pK(a) values of active site groups H50, E96, and H137 in the four variants have been determined by two-dimensional NMR. The catalytic dyad of E96 and H137 is not sensitive to charge replacements, since their pK(a) values vary less than +/-0.3 pH unit with respect to those of the wild type. On the contrary, the pK(a) of His50 undergoes drastic changes when compared to its value in the intact protein. These amount to an increase of 0.5 pH unit or a decrease of 1.1 pH units depending on whether a positive or negative charge is substituted at the active site. The main determinants of the pK(a) values of most of the charged groups in alpha-sarcin have been established by considering the NMR results in conjunction with those derived from theoretical pK(a) calculations. With regard to the active site residues, the H50 pK(a) is chiefly influenced by electrostatic interactions with E96 and H137, whereas the effect of the low dielectric constant and the interaction with R121 appear to be the main determinants of the altered pK(a) value of E96 and H137. Charge-charge interactions and an increased level of burial perturb the pK(a) values of the active site residues of alpha-sarcin, which can account for its reduced ribonucleolytic activity and its high specificity.

PMID: 14609322 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK A values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain 13Cγ nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J Biomol NMR. 2011 Sep;51(1-2):5-19 Authors: McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J Biomol NMR. 2011 Sep;51(1-2):5-19 Authors: McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[NMR paper] Dissecting functional interactions in coagulation protein complexes by use of NMR spe
Dissecting functional interactions in coagulation protein complexes by use of NMR spectroscopy. Related Articles Dissecting functional interactions in coagulation protein complexes by use of NMR spectroscopy. Curr Protein Pept Sci. 2002 Jun;3(3):275-85 Authors: Tolkatchev D, Koutychenko A, Ni F The blood coagulation cascade can be considered as a system of well-orchestrated protein activation reactions involving and leading to the formation of large macromolecular assemblies. NMR investigations performed during the last six years have focused...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Electrostatic interactions in the acid denaturation of alpha-lactalbumin determined b
Electrostatic interactions in the acid denaturation of alpha-lactalbumin determined by NMR. Related Articles Electrostatic interactions in the acid denaturation of alpha-lactalbumin determined by NMR. Protein Sci. 1998 Sep;7(9):1930-8 Authors: Kim S, Baum J alpha-Lactalbumin (alpha-LA) undergoes a pH-dependent unfolding from the native state to a partially unfolded state (the molten globule state). To understand the role of electrostatic interactions in protein denaturation, NMR and CD pH titration experiments are performed on guinea pig...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and c
NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Related Articles NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol. 1998 May-Jun;22(3-4):197-209 Authors: Carver JA, Lindner RA The subunit molecular mass of alpha-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotei
Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Protein-chromophore interactions in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. A study by 13C magic angle spinning NMR. FEBS Lett. 1995 Mar 27;362(1):34-8 Authors: Weesie RJ, Askin D, Jansen FJ, de...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] A NMR investigation on the interactions of the alpha-oligomeric form of the M13 coat
A NMR investigation on the interactions of the alpha-oligomeric form of the M13 coat protein with lipids, which mimic the Escherichia coli inner membrane. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A NMR investigation on the interactions of the alpha-oligomeric form of the M13 coat protein with lipids, which mimic the Escherichia coli inner membrane. Biochim Biophys Acta. 1991 Jul 1;1066(1):102-8 Authors: Sanders JC, Poile TW, Spruijt RB, Van Nuland NA, Watts A, Hemminga MA ...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:50 PM.


Map