BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dissecting functional interactions in coagulation protein complexes by use of NMR spe

Dissecting functional interactions in coagulation protein complexes by use of NMR spectroscopy.

Related Articles Dissecting functional interactions in coagulation protein complexes by use of NMR spectroscopy.

Curr Protein Pept Sci. 2002 Jun;3(3):275-85

Authors: Tolkatchev D, Koutychenko A, Ni F

The blood coagulation cascade can be considered as a system of well-orchestrated protein activation reactions involving and leading to the formation of large macromolecular assemblies. NMR investigations performed during the last six years have focused on the structural, motional and binding properties of some protein domains and interfaces critical for the formation of these protein complexes, outlining sophisticated intermolecular adaptations. The studied protein domains are either single molecules or covalently-linked heterodimers of the epidermal growth factor (EGF) homology domains, calcium-binding EGF domains and gamma-carboxyglutamic(Gla)-containing domains responsible for calcium-dependent binding to cell membranes. The characterized binding interfaces have included those between thrombin and fibrinogen, between thrombin and thrombomodulin, between factor VIIIa and the cell membrane, between tissue factor and factor VIIa, and most recently between factor Va and prothrombin. The obtained results indicate that the regulation of blood coagulation by protein and low molecular weight cofactors may involve a significant degree of protein folding transitions with changes in molecular and conformational motions coupled to enzymatic activities. This new level of complexity of the molecular processes controlling coagulation may lead to novel strategies for the development of more effective therapeutic anticoagulants.

PMID: 12188896 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK A values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain 13Cγ nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J Biomol NMR. 2011 Sep;51(1-2):5-19 Authors: McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J Biomol NMR. 2011 Sep;51(1-2):5-19 Authors: McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE Abstract NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes...
nmrlearner Journal club 0 09-30-2011 05:59 AM
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200067t/aop/images/medium/bi-2011-00067t_0002.gif Biochemistry DOI: 10.1021/bi200067t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sLQe7ipMThM More...
nmrlearner Journal club 0 04-15-2011 01:40 AM
[NMR paper] Dissecting structural and electrostatic interactions of charged groups in alpha-sarci
Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues. Related Articles Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues. Biochemistry. 2003 Nov 18;42(45):13122-33 Authors: García-Mayoral MF, Pérez-Cañadillas JM, Santoro J, Ibarra-Molero B, Sanchez-Ruiz JM, Lacadena J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M The cytotoxic ribonuclease...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR s
Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3. Related Articles Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3. J Biomol Struct Dyn. 1998 Aug;16(1):13-20 Authors: Edwards CA, Tung CS, Silks LA, Gatewood JM, Fee JA, Mariappan SV In this paper, a general method is developed to study site-specific interactions in DNA-protein complexes...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR for the design of functional mimetics of protein-protein interactions: one key is
NMR for the design of functional mimetics of protein-protein interactions: one key is in the building of bridges. Related Articles NMR for the design of functional mimetics of protein-protein interactions: one key is in the building of bridges. Biochem Cell Biol. 1998;76(2-3):177-88 Authors: Song J, Ni F Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] The relative orientation of Gla and EGF domains in coagulation factor X is altered by
The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study. Biochemistry. 1996 Sep 10;35(36):11547-59 Authors: Sunnerhagen M, Olah GA, Stenflo J, Forsén S,...
nmrlearner Journal club 0 08-22-2010 02:20 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:26 AM.


Map