BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-15-2012, 09:51 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,698
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Disordered proteins studied by chemical shifts

Disordered proteins studied by chemical shifts


January 2012
Publication year: 2012
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60










More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Disordered proteins studied by chemical shifts
Disordered proteins studied by chemical shifts January 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-01-2012 06:10 PM
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins
4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins Abstract A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit 13C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (Hα, and Hβ) and carbon (Cα, Cβ) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient...
nmrlearner Journal club 0 05-17-2012 08:40 AM
Disordered proteins studied by chemical shifts
Disordered proteins studied by chemical shifts Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 60</br> Magnus Kjaergaard, Flemming M. Poulsen</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
Disordered proteins studied by chemical shifts
Disordered proteins studied by chemical shifts Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 12 October 2011</br> Magnus*Kjaergaard, Flemming M.*Poulsen</br> More...
nmrlearner Journal club 0 10-14-2011 07:16 AM
Structure-based prediction of methyl chemical shifts in proteins
Structure-based prediction of methyl chemical shifts in proteins Abstract Protein methyl groups have recently been the subject of much attention in NMR spectroscopy because of the opportunities that they provide to obtain information about the structure and dynamics of proteins and protein complexes. With the advent of selective labeling schemes, methyl groups are particularly interesting in the context of chemical shift based protein structure determination, an approach that to date has exploited primarily the mapping between protein structures and backbone chemical shifts. In order to...
nmrlearner Journal club 0 07-15-2011 09:10 PM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner Journal club 0 01-17-2011 02:40 AM
[NMR paper] NMR chemical shifts and structure refinement in proteins.
NMR chemical shifts and structure refinement in proteins. Related Articles NMR chemical shifts and structure refinement in proteins. J Biomol NMR. 1993 Sep;3(5):607-12 Authors: Laws DD, de Dios AC, Oldfield E Computation of the 13C alpha chemical shifts (or shieldings) of glycine, alanine and valine residues in bovine and Drosophila calmodulins and Staphylococcal nuclease, and comparison with experimental values, is reported using a gauge-including atomic orbital quantum-chemical approach. The full approximately 24 ppm shielding range is...
nmrlearner Journal club 0 08-22-2010 03:01 AM
Analysis of and chemical shifts of cysteine and cystine residues in proteins: a quant
Abstract Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the 13\textC\upalpha and 13\textC\upbeta chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:15 PM.


Map