BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-01-2023, 02:22 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy

Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy

Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific ^(19)F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF(3)Phe) at three different...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR
Towards a native environment: structure and function of membrane proteins in lipid bilayers by NMR Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe both the structure and dynamics of membrane proteins, revealing protein function in a near-native lipid bilayer environment. The main limitation of the method is spectral resolution and sensitivity, however recent developments in ssNMR hardware, including the commercialization of 28...
nmrlearner Journal club 0 12-09-2021 09:01 PM
[NMR paper] Dynamics properties of membrane proteins in native cell membranes revealed by solid-state NMR spectroscopy
Dynamics properties of membrane proteins in native cell membranes revealed by solid-state NMR spectroscopy Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid...
nmrlearner Journal club 0 10-09-2021 06:32 PM
[NMR paper] Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy.
Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Related Articles Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat Protoc. 2021 Jan 13;: Authors: Narasimhan S, Pinto C, Lucini Paioni A, van der Zwan J, Folkers GE, Baldus M Abstract For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in...
nmrlearner Journal club 0 01-15-2021 04:25 PM
[ASAP] Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies
Capturing Membrane Protein Ribosome Nascent Chain Complexes in a Native-like Environment for Co-translational Studies https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.0c00423/20200724/images/medium/bi0c00423_0006.gif Biochemistry DOI: 10.1021/acs.biochem.0c00423 http://feeds.feedburner.com/~r/acs/bichaw/~4/WFH3x3vJplk More...
nmrlearner Journal club 0 07-26-2020 05:23 PM
Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution
From The DNP-NMR Blog: Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution Jacso, T., et al., Characterization of Membrane Proteins in Isolated Native Cellular Membranes by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy without Purification and Reconstitution. Angewandte Chemie, 2012. 124(2): p. 447-450. http://dx.doi.org/10.1002/ange.201104987
nmrlearner News from NMR blogs 0 12-31-2015 12:20 AM
[NMR paper] Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.
Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy. Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy. Acc Chem Res. 2013 Jul 5; Authors: Opella SJ Abstract One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information...
nmrlearner Journal club 0 07-09-2013 02:47 PM
[NMR paper] Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy.
Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. Related Articles Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc. 2013 Feb 14; Authors: Anderson KM, Esadze A, Manoharan M, Bruschweiler R, Gorenstein DG, Iwahara J Abstract Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair...
nmrlearner Journal club 0 02-15-2013 05:21 PM
[NMR paper] Direct observation of cell wall structure in living plant tissues by solid-state C NM
Direct observation of cell wall structure in living plant tissues by solid-state C NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Direct observation of cell wall structure in living plant tissues by solid-state C NMR spectroscopy. Plant Physiol. 1990 Jan;92(1):61-5 Authors: Jarvis MC, Apperley DC Solid-state (13)C nuclear magnetic resonance (NMR) spectra of the following intact plant tissues were recorded by the crosspolarization...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:05 AM.


Map