BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2023, 03:38 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Digital quantum simulation of NMR experiments

Digital quantum simulation of NMR experiments

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments.
Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.png Related Articles Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments. J Biomol NMR. 2020 Jan;74(1):95-109 Authors: Waudby CA,...
nmrlearner Journal club 0 10-11-2020 03:25 AM
Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments
Two-dimensional NMR lineshape analysis of single, multiple, zero and double quantum correlation experiments Abstract NMR spectroscopy provides a powerful approach for the characterisation of chemical exchange and molecular interactions by analysis of series of experiments acquired over the course of a titration measurement. The appearance of NMR resonances undergoing chemical exchange depends on the frequency difference relative to the rate of exchange, and in the case of one-dimensional experiments chemical exchange regimes are well established...
nmrlearner Journal club 0 02-29-2020 09:52 PM
[NMR paper] Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Computer-intensive simulation of solid-state NMR experiments using SIMPSON. J Magn Reson. 2014 Jul 22;246C:79-93 Authors: Tošner Z, Andersen R, Stevensson B, Edén M, Nielsen NC, Vosegaard T Abstract Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with...
nmrlearner Journal club 0 08-06-2014 08:39 PM
[NMR paper] Quantum mechanical NMR simulation algorithm for protein-size spin systems.
Quantum mechanical NMR simulation algorithm for protein-size spin systems. Quantum mechanical NMR simulation algorithm for protein-size spin systems. J Magn Reson. 2014 Apr 18;243C:107-113 Authors: Edwards LJ, Savostyanov DV, Welderufael ZT, Lee D, Kuprov I Abstract Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space...
nmrlearner Journal club 0 05-06-2014 02:24 PM
[NMR paper] Quantum mechanical NMR simulation algorithm for protein-size spin systems
Quantum mechanical NMR simulation algorithm for protein-size spin systems Publication date: Available online 18 April 2014 Source:Journal of Magnetic Resonance</br> Author(s): Luke J. Edwards , D.V. Savostyanov , Z.T. Welderufael , Donghan Lee , Ilya Kuprov</br> Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space approximation to protein NMR spectroscopy and...
nmrlearner Journal club 0 04-18-2014 01:35 PM
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins Abstract Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring 1Hâ??13C correlations for 13CH3 methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc...
nmrlearner Journal club 0 09-17-2011 10:20 AM
Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments.
Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments. Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments. J Magn Reson. 2010 Dec;207(2):197-205 Authors: Köneke SG, van Beek JD, Ernst M, Meier BH Zero-quantum coherence generation and reconversion in magic-angle spinning solid-state NMR is analyzed. Two methods are discussed based on implementations using symmetry-based pulse sequences that utilize either isotropic J couplings or dipolar couplings. In either case, the decoupling of abundant...
nmrlearner Journal club 0 03-18-2011 06:00 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:08 PM.


Map