BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-25-2016, 02:33 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy.

Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy.

Related Articles Differentially Isotope-Labeled Nucleosomes to Study Asymmetric Histone Modification Crosstalk by Time-Resolved NMR Spectroscopy.

Angew Chem Int Ed Engl. 2016 May 24;

Authors: Liokatis S, Klingberg R, Tan S, Schwarzer D

Abstract
Post-translational modifications (PTMs) of histones regulate chromatin structure and function. Because nucleosomes contain two copies each of the four core histones, the establishment of different PTMs on individual "sister" histones in the same nucleosomal context, that is, asymmetric histone PTMs, are difficult to analyze. Here, we generated differentially isotope-labeled nucleosomes to study asymmetric histone modification crosstalk by time-resolved NMR spectroscopy. Specifically, we present mechanistic insights into nucleosomal histone H3 modification reactions in cis and in trans, that is, within individual H3 copies or between them. We validated our approach by using the H3S10phK14ac crosstalk mechanism, which is mediated by the Gcn5 acetyltransferase. Moreover, phosphorylation assays on methylated substrates showed that, under certain conditions, Haspin kinase is able to produce nucleosomes decorated asymmetrically with two distinct types of PTMs.


PMID: 27219518 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Time-resolved multidimensional NMR with non-uniform sampling.
Time-resolved multidimensional NMR with non-uniform sampling. Time-resolved multidimensional NMR with non-uniform sampling. J Biomol NMR. 2014 Jan 17; Authors: Mayzel M, Rosenlöw J, Isaksson L, Orekhov VY Abstract Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited...
nmrlearner Journal club 0 01-18-2014 11:31 AM
[NMR paper] Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option.
Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option. Adv Protein Chem...
nmrlearner Journal club 0 09-11-2013 09:15 PM
Site-Specific Mapping and Time-Resolved Monitoring of Lysine Methylation by High-Resolution NMR Spectroscopy
Site-Specific Mapping and Time-Resolved Monitoring of Lysine Methylation by High-Resolution NMR Spectroscopy Franc?ois-Xavier Theillet, Stamatios Liokatis, Jan Oliver Jost, Beata Bekei, Honor May Rose, Andres Binolfi, Dirk Schwarzer and Philipp Selenko http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja301895f/aop/images/medium/ja-2012-01895f_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja301895f http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/tV2dPnMa4Qc
nmrlearner Journal club 0 04-27-2012 10:27 PM
NMR profiling of histone deacetylase and acetyl-transferase activities in real time.
NMR profiling of histone deacetylase and acetyl-transferase activities in real time. NMR profiling of histone deacetylase and acetyl-transferase activities in real time. ACS Chem Biol. 2011 May 20;6(5):419-24 Authors: Dose A, Liokatis S, Theillet FX, Selenko P, Schwarzer D Abstract Histone deacetylases (HDACs) and histone acetyl-transferases (HATs) are universal regulators of eukaryotic transcriptional activity and emerging therapeutic targets for human diseases. Here we describe the generation of isotope-labeled deacetylation and...
nmrlearner Journal club 0 09-07-2011 06:28 PM
Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry
Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry Content Type Journal Article Pages 1-1 DOI 10.1007/s10858-011-9503-7 Authors
nmrlearner Journal club 0 04-14-2011 01:30 AM
NMR-based stable isotope resolved metabolomics in systems biochemistry
NMR-based stable isotope resolved metabolomics in systems biochemistry Abstract An important goal of metabolomics is to characterize the changes in metabolic networks in cells or various tissues of an organism in response to external perturbations or pathologies. The profiling of metabolites and their steady state concentrations does not directly provide information regarding the architecture and fluxes through metabolic networks. This requires tracer approaches. NMR is especially powerful as it can be used not only to identify and quantify metabolites in an unfractionated mixture such...
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Conformational changes in a photosensory LOV domain monitored by time-resolved NMR sp
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. Related Articles Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc. 2004 Mar 24;126(11):3390-1 Authors: Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH Phototropins are light-activated kinases from plants that utilize light-oxygen-voltage (LOV) domains as blue light photosensors. Illumination of these domains leads to the formation of a covalent linkage between the protein and an...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a prot
Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a protein-DNA complex. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Synthesis of isotope labeled oligonucleotides and their use in an NMR study of a protein-DNA complex. Nucleic Acids Res. 1992 Feb 25;20(4):653-7 Authors: Kellenbach ER, Remerowski ML, Eib D, Boelens R, van der Marel GA, van den Elst H, van Boom JH, Kaptein R The synthesis of an oligonucleotide labeled with 13C...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:40 AM.


Map