BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Differential modulation of binding loop flexibility and stability by Arg50 and Arg52

Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.

Related Articles Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.

Biochemistry. 1996 Apr 16;35(15):4784-94

Authors: Cai M, Huang Y, Prakash O, Wen L, Dunkelbarger SP, Huang JK, Liu J, Krishnamoorthi R

The side chains of Arg50 and Arg52 iin Cucurbita maxima trypsin inhibitor-V (CMTI-V) anchor the binding loop to the scaffold region [Cai, M., Gong, Y., Kao, J.L-F., & Krishnamoorthi, R. (1995) Biochemistry 34, 5201-5211]. The consequences of these hydrogen-bonding and electrostatic interactions on the conformational flexibility and stability of the binding loop were evaluated by trypsin-catalyzed hydrolysis of CMTI-V mutants, in which each of the arginines was individually replaced with Ala, Lys, or Gln by genetic engineering methods. All mutants exhibited significantly increased vulnerability to the protease attack at many sites, including the reactive-site (Lys44-Asp45 peptide bond), with the R50 mutants showing much more pronounced effects than the R52 counterparts. For CmTI-V and the mutants studied, a qualitative correlation was inferred between binding loop flexibility and retention time on a reverse-phase high-pressure liquid chromatography C-18 column. The R50 mutants were found to be more flexible than the corresponding R52 versions. These results demonstrate that Arg50 contributes more to the stability and function of CMTI-V. The differing strengths of the hydrogen bonds made by Arg50 and Arg52 were characterized by determining the internal dynamics of their side chains at pH 5.0 and 2.5: 15N NMR longitudinal and transverse relaxation rates and 15N-1H nuclear Overhauser effect (NOE) enhancements were measured for the main-chain and side-chain NH groups in 15N-labeled recombinant CMTI-V (rCMTI-V) and the model-free parameters [Lipari, G., & Szabo, A.(1982) J. Am. Chem. Soc. 104, 4546-59; 4559-4570] were calculated. At both pH 5.0 and 2.5, the arginines at positions 26, 47, 58 and 66 are found to be highly mobile, as the caluculated general order parameters, S2 values, of their NepsilonH groups fall in the range 0.03-0.18. The corresponding values for Arg50 amd Arg52 are 0.73 and 0.63, respectively, at pH 5.0, thus confirming that the two arginines are rigid and hydrogen bonded. At pH 2.5, these hydrogen bonds are still retained with Arg50 appearing to be more restrained (S2 = 0.71) than Arg52 (S2 = 0.56). This is consistent a greater contribution by Arg50 to the conformational stability of the reactive-site loop in CMTI-V. The results also indicate that the Arg50 and Arg52 side chains are not hydrogen-bonded to carboxylate groups, which would be protonated at pH 2.5 and, hence, unavailable for hydrogen-bonding interactions. The overall folding of rCMTI-V appears not to be significantly affected by the pH change, as indicated by comparisons of 1H and 15N chemical shifts, sequential NOE cross-peaks, and S2 values of the backbone atoms, and the conserved side-chain dynamics of Trp9 and Trp54--residues that are involved in hydrophobic and hydrogen-bonding interactions with others in the protein core and the binding loop, respectively.

PMID: 8664268 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Siderocalin Q83 exhibits differential slow dynamics upon ligand binding
Siderocalin Q83 exhibits differential slow dynamics upon ligand binding Abstract Siderocalin Q83 is a small soluble protein that has the ability to bind two different ligands (enterobactin and arachidonic acid) simultaneously in two distinct binding sites. Here we report that Q83 exhibits an intriguing dynamic behavior. In its free form, the protein undergoes significant micro-to-millisecond dynamics. When binding arachidonic acid, the motions of the arachidonic acid binding site are quenched while the dynamics at the enterobactin binding site increases. Reciprocally, enterobactin...
nmrlearner Journal club 0 09-30-2011 08:01 PM
[NMR paper] NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus interna
NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA. Related Articles NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA. Biochemistry. 2004 May 18;43(19):5757-71 Authors: Du Z, Ulyanov NB, Yu J, Andino R, James TL The 5'-untranslated region of positive-strand RNA viruses...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Correlation of binding-loop internal dynamics with stability and function in potato I
Correlation of binding-loop internal dynamics with stability and function in potato I inhibitor family: relative contributions of Arg(50) and Arg(52) in Cucurbita maxima trypsin inhibitor-V as studied by site-directed mutagenesis and NMR spectroscopy. Related Articles Correlation of binding-loop internal dynamics with stability and function in potato I inhibitor family: relative contributions of Arg(50) and Arg(52) in Cucurbita maxima trypsin inhibitor-V as studied by site-directed mutagenesis and NMR spectroscopy. Biochemistry. 2002 Jul 30;41(30):9572-9 ...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop bin
NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein. Related Articles NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein. RNA. 2002 Jan;8(1):83-96 Authors: DeJong ES, Marzluff WF, Nikonowicz EP The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Structure of an RNA hairpin loop with a 5'-CGUUUCG-3' loop motif by heteronuclear NMR
Structure of an RNA hairpin loop with a 5'-CGUUUCG-3' loop motif by heteronuclear NMR spectroscopy and distance geometry. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structure of an RNA hairpin loop with a 5'-CGUUUCG-3' loop motif by heteronuclear NMR spectroscopy and distance geometry. Biochemistry. 1997 Nov 18;36(46):13989-4002 Authors: Sich C, Ohlenschläger O, Ramachandran R, Görlach M, Brown LR Structural features of a 19-nucleotide RNA hairpin loop (5'-GGCGUACGUUUCGUACGCC-3'),...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for
NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for strong hydrogen bonding in human N-ras p21. Related Articles NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for strong hydrogen bonding in human N-ras p21. Biochemistry. 1990 Apr 10;29(14):3509-14 Authors: Redfield AG, Papastavros MZ The structure of the phosphoryl binding region of human N-ras p21 was probed by using heteronuclear proton-observed NMR methods. Normal protein and a Gly-12----Asp-12 mutant protein were prepared...
nmrlearner Journal club 0 08-21-2010 10:48 PM
[NMR paper] The mobile loop region of the NAD(H) binding component (dI) of proton-translocating n
The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The mobile loop region of the NAD(H) binding component (dI) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides. Biochim Biophys Acta. 1999...
nmrlearner Journal club 0 08-21-2010 04:03 PM
[NMR paper] Location of a cation-binding site in the loop between helices F and G of bacteriorhod
Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523-31 Authors: Tuzi S, Yamaguchi S, Tanio M, Konishi H, Inoue S, Naito A,...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:43 PM.


Map