BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-05-2017, 09:06 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,785
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs

Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs



Biochemistry
DOI: 10.1021/acs.biochem.6b01245



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.
Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-highwire.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates...
nmrlearner Journal club 0 04-02-2016 09:55 PM
Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction
Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.5b01085/20151215/images/medium/bi-2015-01085f_0006.gif Biochemistry DOI: 10.1021/acs.biochem.5b01085 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/Lu0WbvB26gA More...
nmrlearner Journal club 0 12-16-2015 10:32 PM
[NMR paper] NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs.
NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs. Related Articles NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs. Biophys J. 2015 Aug 18;109(4):772-782 Authors: Mineev KS, Goncharuk SA, Kuzmichev PK, Vilar M, Arseniev AS Abstract P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work,...
nmrlearner Journal club 0 08-20-2015 07:36 PM
NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs
NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs Publication date: 18 August 2015 Source:Biophysical Journal, Volume 109, Issue 4</br> Author(s): Konstantin*S. Mineev, Sergey*A. Goncharuk, Pavel*K. Kuzmichev, Marçal Vilar, Alexander*S. Arseniev</br> P75NTR is a type I integral membrane protein that plays a key role in neurotrophin signaling. However, structural data for the receptor in various functional states are sparse and controversial. In this work, we studied the spatial structure and mobility of the...
nmrlearner Journal club 0 08-19-2015 03:24 PM
[NMR paper] Smaller*Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
Smaller*Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Related Articles Smaller*Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR. Protein J. 2015 May 17; Authors: Wang X, Mu Z, Li Y, Bi Y, Wang Y Abstract Phospholipid bilayer nanodiscs, a newly developed model membrane system, provides "native-like" membrane environment for membrane protein studies. Nanodiscs assembled by membrane scaffold protein and phospholipid bilayer, with defined sizes that can be accurately...
nmrlearner Journal club 0 05-20-2015 10:27 AM
Preparation of a functional GABARAP-lipid conjugate in nanodiscs and its investigation by solution NMR spectroscopy.
Preparation of a functional GABARAP-lipid conjugate in nanodiscs and its investigation by solution NMR spectroscopy. Preparation of a functional GABARAP-lipid conjugate in nanodiscs and its investigation by solution NMR spectroscopy. Chembiochem. 2010 Sep 24;11(14):1967-70 Authors: Ma P, Mohrlüder J, Schwarten M, Stoldt M, Singh SK, Hartmann R, Pacheco V, Willbold D
nmrlearner Journal club 0 01-21-2011 01:22 AM
[NMR paper] Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as mo
Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy. Eur J Biochem. 1993 Apr 15;213(2):781-8 Authors: Löw A, Sprinzl M, Limmer S Proton-NMR signals in the downfield region (below approximately 10...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Nucleotide binding and GTP hydrolysis by elongation factor Tu from Thermus thermophil
Nucleotide binding and GTP hydrolysis by elongation factor Tu from Thermus thermophilus as monitored by proton NMR. Related Articles Nucleotide binding and GTP hydrolysis by elongation factor Tu from Thermus thermophilus as monitored by proton NMR. Biochemistry. 1992 Mar 24;31(11):2970-7 Authors: Limmer S, Reiser CO, Schirmer NK, Grillenbeck NW, Sprinzl M Proton NMR experiments of the GTP/GDP-binding protein EF-Tu from the extremely thermophilic bacterium Thermus thermophilus HB8 in H2O have been performed paying special attention to the...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:28 PM.


Map