BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-08-2015, 12:17 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A Different Approach to Multiplicity-Edited Heteronuclear Single Quantum Correlation Spectroscopy

A Different Approach to Multiplicity-Edited Heteronuclear Single Quantum Correlation Spectroscopy

Publication date: Available online 8 August 2015
Source:Journal of Magnetic Resonance

Author(s): Peyman Sakhaii, Wolfgang Bermel

A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of 13C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD]r,x element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear 1 J HC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and / or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies.
Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies. Related Articles Spatially Selective Heteronuclear Multiple-Quantum Coherence Spectroscopy for Biomolecular NMR Studies. Chemphyschem. 2014 Apr 30; Authors: Sathyamoorthy B, Parish DM, Montelione GT, Xiao R, Szyperski T Abstract Spatially selective heteronuclear multiple-quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to "time-staggered" acquisitioning of free induction decays...
nmrlearner Journal club 0 05-03-2014 10:42 PM
Rapid Heteronuclear Single Quantum Correlation NMR Spectra at Natural Abundance
Rapid Heteronuclear Single Quantum Correlation NMR Spectra at Natural Abundance David Schulze-Su?nninghausen, Johanna Becker and Burkhard Luy http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja411588d/aop/images/medium/ja-2013-11588d_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja411588d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/TExWpxpxjak
nmrlearner Journal club 0 01-22-2014 12:01 PM
Origin and removal of mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single quantum correlation spectra
Origin and removal of mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single quantum correlation spectra Abstract Here we describe phasing anomalies observed in gradient sensitivity enhanced 15N-1H HSQC spectra, and analyze their origin. It is shown that, as a result of 15N off-resonance effects, dispersive contributions to the 1H signal become detectable, and lead to 15N-offset dependent phase errors. Strategies that effectively suppress these artifacts are presented. Content Type Journal Article Category Article Pages 199-207
nmrlearner Journal club 0 09-30-2011 08:01 PM
(1)H assisted (13)C/(15)N heteronuclear correlation spectroscopy in oriented sample solid-state NMR of single crystal and magnetically aligned samples.
(1)H assisted (13)C/(15)N heteronuclear correlation spectroscopy in oriented sample solid-state NMR of single crystal and magnetically aligned samples. (1)H assisted (13)C/(15)N heteronuclear correlation spectroscopy in oriented sample solid-state NMR of single crystal and magnetically aligned samples. J Magn Reson. 2011 Apr 9; Authors: Lin EC, Opella SJ (1)H-irradiation under mismatched Hartmann-Hahn conditions provides an alternative mechanism for carrying out (15)N/(13)C transfers in triple-resonance heteronuclear correlation spectroscopy...
nmrlearner Journal club 0 05-06-2011 12:02 PM
1H Assisted 13C/15N Heteronuclear Correlation Spectroscopy in Oriented Sample Solid-State NMR of Single Crystal and Magnetically Aligned Samples
1H Assisted 13C/15N Heteronuclear Correlation Spectroscopy in Oriented Sample Solid-State NMR of Single Crystal and Magnetically Aligned Samples Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 9 April 2011</br> Eugene C., Lin , Stanley J., Opella</br> 1H-irradiation under mismatched Hartmann-Hahn conditions provides an alternative mechanism for carrying out 15N/13C transfers in triple-resonance heteronuclear correlation spectroscopy (HETCOR) on stationary samples of single crystals and aligned samples of biopolymers, which...
nmrlearner Journal club 0 04-10-2011 12:52 PM
1H Assisted 13C/15N Heteronuclear Correlation Spectroscopy in Oriented Sample Solid-State NMR of Single Crystal and Magnetically Aligned Samples
1H Assisted 13C/15N Heteronuclear Correlation Spectroscopy in Oriented Sample Solid-State NMR of Single Crystal and Magnetically Aligned Samples Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 9 April 2011</br> Eugene C., Lin , Stanley J., Opella</br> 1H-irradiation under mismatched Hartmann-Hahn conditions provides an alternative mechanism for carrying out 15N/13C transfers in triple-resonance heteronuclear correlation spectroscopy (HETCOR) on stationary samples of single crystals and aligned samples of biopolymers, which...
nmrlearner Journal club 0 04-10-2011 12:42 PM
Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments.
Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments. Characteristics of zero-quantum correlation spectroscopy in MAS NMR experiments. J Magn Reson. 2010 Dec;207(2):197-205 Authors: Köneke SG, van Beek JD, Ernst M, Meier BH Zero-quantum coherence generation and reconversion in magic-angle spinning solid-state NMR is analyzed. Two methods are discussed based on implementations using symmetry-based pulse sequences that utilize either isotropic J couplings or dipolar couplings. In either case, the decoupling of abundant...
nmrlearner Journal club 0 03-18-2011 06:00 PM
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy.
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy. A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy. Anal Bioanal Chem. 2011 Jan 11; Authors: Tsiafoulis CG, Exarchou V, Tziova PP, Bairaktari E, Gerothanassis IP, Troganis AN The rapid and accurate determination of specific metabolites present in biofluids is a very demanding task which is essential...
nmrlearner Journal club 0 01-12-2011 11:11 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:07 AM.


Map