BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-22-2015, 01:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: Structure determination from PXRD, solid-state NMR and computer modeling.

Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: Structure determination from PXRD, solid-state NMR and computer modeling.

Related Articles Diazole-based powdered cocrystal featuring a helical hydrogen-bonded network: Structure determination from PXRD, solid-state NMR and computer modeling.

Solid State Nucl Magn Reson. 2014 Dec 30;

Authors: Sardo M, Santos SM, Babaryk AA, López C, Alkorta I, Elguero J, Claramunt RM, Mafra L

Abstract
We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···? contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···? contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles.


PMID: 25604487 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins.
Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins. Structure determination of ?-helical membrane proteins by solution-state NMR: Emphasis on retinal proteins. Biochim Biophys Acta. 2013 Jul 2; Authors: Gautier A Abstract The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical...
nmrlearner Journal club 0 07-09-2013 02:47 PM
Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins
Structure determination of ?–helical membrane proteins by solution-state NMR: Emphasis on retinal proteins Publication date: Available online 2 July 2013 Source:Biochimica et Biophysica Acta (BBA) - Bioenergetics</br> Author(s): Antoine Gautier</br> The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein–protein interactions. Indeed, the...
nmrlearner Journal club 0 07-02-2013 09:44 AM
Solvent and H/D Isotope Effects on the Proton TransferPathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic AcidAnions Observed by Combined UV–vis and NMR Spectroscopy
Solvent and H/D Isotope Effects on the Proton TransferPathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic AcidAnions Observed by Combined UV–vis and NMR Spectroscopy Benjamin Koeppe, Jing Guo, Peter M. Tolstoy, Gleb S. Denisov and Hans-Heinrich Limbach http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja400611x/aop/images/medium/ja-2013-00611x_0015.gif Journal of the American Chemical Society DOI: 10.1021/ja400611x http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 05-09-2013 04:04 AM
[NMR paper] Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy.
Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy. Related Articles Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy. J Am Chem Soc. 2013 Apr 23; Authors: Köppe B, Guo J, Tolstoy PM, Denisov GS, Limbach HH Abstract Heteroconjugated hydrogen-bonded anions A...H...X- of phenols (AH) and...
nmrlearner Journal club 0 04-24-2013 09:48 PM
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Biophys J. 2011 Aug 3;101(3):L23-L25 Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner Journal club 0 08-03-2011 12:00 PM
Reaction Pathways of Proton Transfer in Hydrogen-Bonded Phenol–Carboxylate Complexes Explored by Combined UV–Vis and NMR Spectroscopy
Reaction Pathways of Proton Transfer in Hydrogen-Bonded Phenol–Carboxylate Complexes Explored by Combined UV–Vis and NMR Spectroscopy Benjamin Koeppe, Peter M. Tolstoy and Hans-Heinrich Limbach http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201113a/aop/images/medium/ja-2011-01113a_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja201113a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/QUQwn6dGPs4
nmrlearner Journal club 0 05-03-2011 05:18 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy. Biochim Biophys Acta. 2010 Dec 28; Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
nmrlearner Journal club 0 01-05-2011 09:51 PM
[NMR paper] A solid-state NMR index of helical membrane protein structure and topology.
A solid-state NMR index of helical membrane protein structure and topology. Related Articles A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000 May;144(1):150-5 Authors: Marassi FM, Opella SJ The secondary structure and topology of membrane proteins can be described by inspection of two-dimensional (1)H-(15)N dipolar coupling/(15)N chemical shift polarization inversion spin exchange at the magic angle spectra obtained from uniformly (15)N-labeled samples in oriented bilayers. The characteristic...
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:29 AM.


Map