BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-11-2024, 01:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950Â*MHz NMR spectrometers

Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950Â*MHz NMR spectrometers

Abstract

Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(Ï?D) and J(2Ï?D). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1Ï?, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475Â*MHz, 500Â*MHz, 900Â*MHz, and 950Â*MHz. The spectral density mapping of the 475/950Â*MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950Â*MHz rates with 700Â*MHz rates interpolated from 500/900Â*MHz data to yield six J(Ï?D) values for each methyl peak. The J(Ï?) profile for each peak was fit to the original (Ï?M, Sf2, Ï?f) or extended model-free function (Ï?M, Sf2, Ss2, Ï?f, Ï?s) to obtain optimized dynamic parameters.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers
Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers Deuterium (²H) spin relaxation of ^(13)CH(2)D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B(0) dependence of the ²H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(?(D)) and J(2?(D)). In this study, the linear relation between ²H relaxation rates at B(0) fields separated by a...
nmrlearner Journal club 0 06-10-2024 11:03 PM
Electron spin resonance studies on deuterated nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging #DNPNMR #ODNP
From The DNP-NMR Blog: Electron spin resonance studies on deuterated nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging #DNPNMR #ODNP Jebaraj, D. David, Hideo Utsumi, and A. Milton Franklin Benial. “Electron Spin Resonance Studies on Deuterated Nitroxyl Spin Probes Used in Overhauser-Enhanced Magnetic Resonance Imaging.” Magnetic Resonance in Chemistry 55, no. 8 (2017): 700–705. https://doi.org/10.1002/mrc.4576.
nmrlearner News from NMR blogs 0 06-23-2018 12:47 AM
[NMR paper] Enhanced Spectral Density Mapping through Combined Multiple-Field Deuterium mCH2D Methyl Spin Relaxation NMR Spectroscopy.
Enhanced Spectral Density Mapping through Combined Multiple-Field Deuterium mCH2D Methyl Spin Relaxation NMR Spectroscopy. Related Articles Enhanced Spectral Density Mapping through Combined Multiple-Field Deuterium mCH2D Methyl Spin Relaxation NMR Spectroscopy. Methods. 2017 Dec 27;: Authors: Hsu A, O'Brien PA, Bhattacharya S, Rance M, Palmer AG Abstract Quadrupolar relaxation of 2H (D) nuclear spins is a powerful probe of conformational dynamics in biological macromolecules. Deuterium relaxation rate constants are determined by...
nmrlearner Journal club 0 01-01-2018 02:17 AM
Partially-deuterated samples of HET-s(218â??289) fibrils: assignment and deuterium isotope effect
Partially-deuterated samples of HET-s(218â??289) fibrils: assignment and deuterium isotope effect Abstract Fast magic-angle spinning and partial sample deuteration allows direct detection of 1H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, 1H detection requires assignment of the 1H resonances. In this work, resonance assignments of backbone HN and Hα are presented for HET-s(218â??289) fibrils, based on the existing assignment of Cα, Cβ, Câ??, and N resonances. The samples used are...
nmrlearner Journal club 0 01-11-2017 01:23 AM
[NMR tweet] Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99
Nuclear Spin Relaxation in Liquids: Nuclear Spin Relaxation in LiquidsNuclear magnetic resonance (NMR) is wide... http://bit.ly/hDdW99 Published by booksvariety (BooksVariety.com) on 2010-12-04T23:02:54Z Source: Twitter
nmrlearner Twitter NMR 0 12-04-2010 11:36 PM
[NMR paper] Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation s
Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy. Related Articles Mapping oxygen accessibility to ribonuclease a using high-resolution NMR relaxation spectroscopy. Biophys J. 2004 Mar;86(3):1713-25 Authors: Teng CL, Bryant RG Paramagnetic contributions to nuclear magnetic spin-lattice relaxation rate constant induced by freely diffusing molecular oxygen measured at hundreds of different protein proton sites provide a direct means for characterizing the exploration of the protein by oxygen. This...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Backbone dynamics of the cytotoxic ribonuclease alpha-sarcin by 15N NMR relaxation me
Backbone dynamics of the cytotoxic ribonuclease alpha-sarcin by 15N NMR relaxation methods. Related Articles Backbone dynamics of the cytotoxic ribonuclease alpha-sarcin by 15N NMR relaxation methods. J Biomol NMR. 2002 Dec;24(4):301-16 Authors: Pérez-Cañadillas JM, Guenneugues M, Campos-Olivas R, Santoro J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M The cytotoxic ribonuclease alpha-sarcin is a 150-residue protein that inactivates ribosomes by selectively cleaving a single phosphodiester bond in a strictly conserved rRNA loop. In order...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide ex
Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Related Articles Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry. 1993 Jun 22;32(24):6152-6 Authors: Mullins LS, Pace CN, Raushel FM The rate of hydrogen bond formation at individual amino acid residues in ribonuclease T1 (RNase T1) has been investigated by the hydrogen-deuterium exchange-2D NMR (HDEx-2D NMR) technique (Udgaonkar...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:10 AM.


Map