BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of the structure of the N-terminal splice region of the cyclic AMP-spec

Determination of the structure of the N-terminal splice region of the cyclic AMP-specific phosphodiesterase RD1 (RNPDE4A1) by 1H NMR and identification of the membrane association domain using chimeric constructs.

Related Articles Determination of the structure of the N-terminal splice region of the cyclic AMP-specific phosphodiesterase RD1 (RNPDE4A1) by 1H NMR and identification of the membrane association domain using chimeric constructs.

J Biol Chem. 1996 Jul 12;271(28):16703-11

Authors: Smith KJ, Scotland G, Beattie J, Trayer IP, Houslay MD

A 25-residue peptide representing the membrane targeting N-terminal splice region of the cyclic AMP phosphodiesterase RD1 (RNPDE4A1) was synthesized, and its structure was determined by 1H NMR. Two independently folding helical regions were identified, separated by a highly mobile "hinge" region. The first helical region was formed by an N-terminal amphipathic alpha-helix, and the second consisted of multiple overlapping turns and contained a distinct compact, hydrophobic, tryptophan-rich domain (residues 14-20). Chimeric molecules, formed between the N-terminal region of RD1 and the soluble bacterial protein chloramphenicol acetyltransferase, were used in an in vitro system to determine the features within the splice region that were required for membrane association. The ability of RD1-chloramphenicol acetyltransferase chimera to become membrane-associated was not affected by deletion of any of the following regions: the apolar section (residues 2-7) of the first helical region, the polar part of this region together with the hinge region (residues 8-13), or the polar end of the C-terminal helical region (residues 21-25). In marked contrast, deletion of the compact, hydrophobic tryptophan-rich domain (residues 14-20) found in the second helical region obliterated membrane association. Replacement of this domain with a hydrophobic cassette of seven alanine residues also abolished membrane association, indicating that membrane-association occurred by virtue of specific hydrophobic interactions with residues within the compact, tryptophan-rich domain. The structure of this domain is well defined in the peptide, and although the region is helical, both the backbone and the distribution of side chains are somewhat distorted as compared with an ideal alpha-helix. Hydrophobic interactions, such as the "stacked" rings of residues Pro14 and Trp15, stabilize this domain with the side chain of residue Leu16 adopting a central position, interacting with the side chains of all three tryptophan residues 15, 19, and 20. These bulky side chains thus form a hydrophobic cluster. In contrast, the side chain of residue Val17 is relatively exposed, pointing out from the opposite "face" of the peptide. Although it appears that this compact, tryptophan-rich domain is responsible for membrane association, at present the target site and hence the specific interactions involved in membrane targeting by the RD1 splice region remain unidentified.

PMID: 8663181 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH.
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH. Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH. Chem Biol Drug Des. 2010 Nov 30; Authors: Leone M, Barile E, Dahl R, Pellecchia M We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM...
nmrlearner Journal club 0 12-02-2010 02:54 PM
[NMR paper] Structural preordering in the N-terminal region of ribosomal protein S4 revealed by h
Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Related Articles Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry. 2000 Nov 7;39(44):13602-13 Authors: Sayers EW, Gerstner RB, Draper DE, Torchia DA Protein S4, a component of the 30S subunit of the prokaryotic ribosome, is one of the first proteins to interact with rRNA in the process of ribosome assembly and is known to be involved in the regulation...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Determination of pKa values of the histidine side chains of phosphatidylinositol-spec
Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Determination of pKa values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Structure determination of the N-terminal thioredoxin-like domain of protein disulfid
Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. Biochemistry. 1996 Jun 18;35(24):7684-91 Authors: Kemmink J, Darby NJ, Dijkstra K, Nilges M, Creighton TE As a first step in...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Determination of local protein structure by spin label difference 2D NMR: the region
Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Related Articles Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Biochemistry. 1995 Feb 7;34(5):1635-45 Authors: Girvin ME, Fillingame RH Purified subunit c from the H(+)-transporting F1F0 ATP synthase of Escherichia coli folds as an antiparallel pair of extended helices in a solution of...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] The carboxyl-terminal region of human interferon gamma is important for biological ac
The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis. Related Articles The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis. Protein Eng. 1991 Feb;4(3):335-41 Authors: Lundell D, Lunn C, Dalgarno D, Fossetta J, Greenberg R, Reim R, Grace M, Narula S Deletion of nine amino acids from the carboxyl terminus of human IFN gamma (residues 138--146; LFRGRRASQ) resulted in a 7-fold increase in specific antiviral...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependen
1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Related Articles 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry. 1991 Oct 1;30(39):9387-95 Authors: Atkinson RA, Saudek V, Huggins JP, Pelton JT Cyclic GMP dependent protein kinase exists as a dimer in its native form. A peptide corresponding to the dimerization domain in the N-terminal segment has been characterized...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependen
1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Related Articles 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry. 1991 Oct 1;30(39):9387-95 Authors: Atkinson RA, Saudek V, Huggins JP, Pelton JT Cyclic GMP dependent protein kinase exists as a dimer in its native form. A peptide corresponding to the dimerization domain in the N-terminal segment has been characterized...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:19 PM.


Map