BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of solution structures of paramagnetic proteins by NMR.

Determination of solution structures of paramagnetic proteins by NMR.

Related Articles Determination of solution structures of paramagnetic proteins by NMR.

Eur Biophys J. 1998;27(4):367-75

Authors: Turner DL, Brennan L, Chamberlin SG, Louro RO, Xavier AV

Standard procedures for using nuclear Overhauser enhancements (NOE) between protons to generate structures for diamagnetic proteins in solution from NMR data may be supplemented by using dipolar shifts if the protein is paramagnetic. This is advantageous since the electron -nuclear dipolar coupling provides relatively long-range geometric information with respect to the paramagnetic centre which complements the short-range distance constraints NOEs. Several different strategies have been developed to date, but none of these attempts to combine data from NOEs and dipolar shifts in the initial stages of structure calculation or to determine three dimensional protein structures together with their magnetic properties. This work shows that the magnetic and atomic structures are highly correlated and that it is important to have additional constraints both to provide starting parameters for the magnetic properties and to improve the definition of the best fit. Useful parameters can be obtained for haem proteins from Fermi contact shifts; this approach is compared with a new method based on the analysis of dipolar shifts in haem methyl groups with respect to data from horse and tuna ferricytochromes c. The methods developed for using data from NOEs and dipolar shifts have been incorporated in a new computer program, PARADYANA, which is demonstrated in application to a model data set for the sequence of the haem octapeptide known as microperoxidase-8.

PMID: 9691466 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR tweet] Biophysical examination of proteins by nuclear magnetic resonance:Atomic structures of macromolecules in solution
Biophysical examination of proteins by nuclear magnetic resonance:Atomic structures of macromolecules in solution Published by Theanphropy (James-N LEE-ANGEL) on 2011-12-24T00:17:57Z Source: Twitter
nmrlearner Twitter NMR 0 12-24-2011 12:27 AM
[NMR paper] NMR structures of paramagnetic metalloproteins.
NMR structures of paramagnetic metalloproteins. Related Articles NMR structures of paramagnetic metalloproteins. Q Rev Biophys. 2005 May;38(2):167-219 Authors: Arnesano F, Banci L, Piccioli M Metalloproteins represent a large share of the proteome and many of them contain paramagnetic metal ions. The knowledge, at atomic resolution, of their structure in solution is important to understand processes in which they are involved, such as electron transfer mechanisms, enzymatic reactions, metal homeostasis and metal trafficking, as well as...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Determination of the electron relaxation rates in paramagnetic metal complexes: appli
Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods. Related Articles Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods. J Magn Reson. 2004 Apr;167(2):169-77 Authors: Jensen MR, Led JJ Four different approaches for determining the electron relaxation rates in paramagnetic metallo-proteins are investigated, using a paramagnetic Ni2+ complex of a protein as an example. All four approaches rely on the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures
Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Related Articles Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog Lipid Res. 2004 May;43(3):177-99 Authors: Hamilton JA The interactions of fatty acids with proteins have been studied by a variety of conventional approaches for decades. However, only limited aspects of fatty acid-protein interactions have been elucidated, even with the integration of information gleaned from the many techniques....
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR solution structure determination of membrane proteins reconstituted in detergent
NMR solution structure determination of membrane proteins reconstituted in detergent micelles. Related Articles NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 2003 Nov 27;555(1):144-50 Authors: Fernández C, Wüthrich K As an alternative to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy in solution can be used for three-dimensional structure determination of small membrane proteins, preferably proteins with beta-barrel fold. This paper reviews recent achievements as...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Structures of larger proteins in solution: three- and four-dimensional heteronuclear
Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Related Articles Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science. 1991 Jun 7;252(5011):1390-9 Authors: Clore GM, Gronenborn AM Three- and four-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy offers dramatic improvements in spectral resolution by spreading through-bond and through-space correlations in three and four orthogonal frequency axes....
nmrlearner Journal club 0 08-21-2010 11:16 PM
Structure determination of proteins in 2H2O solution aided by a deuterium-decoupled 3
Abstract We developed an NMR pulse sequence, 3D HCA(N)CO, to correlate the chemical shifts of protein backbone 1Hα and 13Cα to those of 13C� in the preceding residue. By applying 2H decoupling, the experiment was accomplished with high sensitivity comparable to that of HCA(CO)N. When combined with HCACO, HCAN and HCA(CO)N, the HCA(N)CO sequence allows the sequential assignment using backbone 13C� and amide 15N chemical shifts without resort to backbone amide protons. This assignment strategy was demonstrated for 13C/15N-labeled GB1 dissolved in 2H2O. The quality of the GB1 structure...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts Michael John, Guido Pintacuda, Ah Young Park, Nicholas E. Dixon, and Gottfried Otting J. Am. Chem. Soc.; 2006; 128(39) pp 12910 - 12916; (Article) Abstract: Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small...
administrator Protein-ligand interactions 1 03-30-2007 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:14 AM.


Map