BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-24-2016, 04:30 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer.

Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer.

Determination of pseudocontact shifts of low-populated excited states by NMR chemical exchange saturation transfer.

Phys Chem Chem Phys. 2016 Mar 22;

Authors: Ma RS, Li QF, Wang AD, Zhang JH, Liu ZJ, Wu JH, Su XC, Ruan K

Abstract
Despite the critical roles of excited states in protein functions, they remain intractable for most structural studies because of their notably low populations. Chemical shifts for "invisible" states in slow exchange with the ground state are intuitively observed using nuclear magnetic resonance (NMR) chemical exchange saturation transfer (CEST) experiments. Here, we present a CEST NMR spectroscopy study for the observation of protein pseudocontact shifts (PCSs) of excited states, which carry valuable angular and distance information about these states. We first validate this approach, dubbed PCS-CEST, in the slow-exchange system of Abp1p SH3-Ark1p labeled with lanthanide ions, where the PCSs of the minor states resemble those of the holo-form ground state as expected. We further demonstrate that pre-existing folding transitional conformations of an FF domain exhibit remarkably lower PCS values than the ground state, which suggests that the low-populated ensemble is unfolded or largely unfolded. A higher resolution of PCSs of the minor states is achieved using our 1D selective CEST experiments. Thus, PCS-CEST provides an exquisite structural probe into the minor but functionally essential excited states.


PMID: 27001533 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Related Articles Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Angew Chem Int Ed Engl. 2016 Jan 28; Authors: Gu Y, Hansen AL, Peng Y, Brüschweiler R Abstract Functional motions of (15) N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per...
nmrlearner Journal club 0 01-30-2016 09:13 PM
Speeding-up exchange-mediated saturation transfer experiments by Fourier transform
Speeding-up exchange-mediated saturation transfer experiments by Fourier transform Abstract Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of...
nmrlearner Journal club 0 09-10-2015 01:10 AM
[NMR paper] Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST)
Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange via Saturaion Transfer (TRE-CEST) Publication date: Available online 7 May 2015 Source:Journal of Magnetic Resonance</br> Author(s): Joshua I. Friedman , Ding Xia , Ravinder R. Regatte , Alexej Jerschow</br> Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange...
nmrlearner Journal club 0 05-10-2015 07:49 PM
Integral membrane protein structure determination using pseudocontact shifts
Integral membrane protein structure determination using pseudocontact shifts Abstract Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary...
nmrlearner Journal club 0 01-21-2015 08:39 PM
[NMR paper] Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.
Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. J Chem Phys. 2014 Feb 28;140(8):084203 ...
nmrlearner Journal club 0 03-05-2014 11:57 PM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy. Angew Chem Int Ed Engl. 2013 Feb 28; Authors: Vallurupalli P, Kay LE Abstract Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner Journal club 0 03-02-2013 11:45 AM
[U. of Ottawa NMR Facility Blog] Saturation Transfer and Exchange
Saturation Transfer and Exchange Exchange processes that occur on the NMR time scale affect the NMR line shapes and can be studied by line shape analysis. If the exchange process is slow on the NMR time scale, one can employ EXSY or inversion transfer methods to study the exchange. An alternative to these is the saturation transfer technique. In this method, one of the slowly exchanging resonances (A) is saturated with low power CW irradiation and the effect on the intensity of the resonance of the exchange partner (B) is monitored. If there is exchange between A and B during the period of...
nmrlearner News from NMR blogs 0 08-03-2011 01:00 AM
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples
Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively 13C labeled samples Patrik Lundström, D. Flemming Hansen and Lewis E. Kay Journal of Biomolecular NMR; 2008; 42(1); pp 35 - 47 Abstract: Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon...
Abe Journal club 0 09-21-2008 11:36 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:06 PM.


Map