Related ArticlesDetermination of multiple ***φ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR.
J Magn Reson. 1999 Aug;139(2):389-401
Authors: Hong M
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive (13)C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective (13)C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-(13)C]glucose preferentially labels the ends of the side chains, while [2-(13)C]glycerol labels the C(alpha) of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles phi; simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively (13)C labeled protein were performed using (15)N-(13)C 2D correlation spectroscopy. From the time dependence of the (15)N-(13)C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective (13)C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 August 2011</br>
Sungsool, Wi , Justin, Spano</br>
A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ?-torsion angle from a 1H–15N or 1H–13C? spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a C?(i) or a 15N peak is site-specifically obtainable in the...
nmrlearner
Journal club
0
08-18-2011 03:52 AM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
J Magn Reson. 2011 Mar 17;
Authors: Traaseth NJ, Veglia G
We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner
Journal club
0
04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br>
Nathaniel J., Traaseth , Gianluigi, Veglia</br>
We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner
Journal club
0
03-18-2011 06:43 AM
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
Phys Chem Chem Phys. 2010 Nov 14;12(42):13999-4008
Authors: Edwards R, Madine J, Fielding L, Middleton DA
Knowledge of the three-dimensional structure of a ligand in the binding site of its biological...
nmrlearner
Journal club
0
02-04-2011 11:34 AM
Detecting the “Afterglow” of 13C NMR in Proteins Using Multiple Receivers
Detecting the “Afterglow” of 13C NMR in Proteins Using Multiple Receivers
E?riks Kupc?e, Lewis E. Kay and Ray Freeman
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1080025/aop/images/medium/ja-2010-080025_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1080025
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/YNH74d-9ntc
nmrlearner
Journal club
0
12-03-2010 08:52 AM
[NMR paper] Automated NMR determination of protein backbone dihedral angles from cross-correlated
Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation.
Related Articles Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation.
J Biomol NMR. 2002 Apr;22(4):349-63
Authors: Kloiber K, Schüler W, Konrat R
The simultaneous interpretation of a suite of dipole-dipole and dipole-CSA cross-correlation rates involving the backbone nuclei 13Calpha, 1Halpha, 13CO, 15N and 1HN can be used to resolve the ambiguities associated with each individual...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Analysis of main chain torsion angles in proteins: prediction of NMR coupling constan
Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations.
J Mol Biol. 1996 Jan 26;255(3):494-506
Authors: Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM
Using a data base of 85 high resolution protein...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spi
Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants.
Related Articles Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants.
Biochemistry. 1991 Jan 29;30(4):986-96
Authors: Smith LJ, Sutcliffe MJ, Redfield C, Dobson CM
Three-bond 3JHN alpha coupling constants have been determined for 106 residues and 3J alpha beta coupling constants have been measured for 57 residues of the 129-residue protein hen egg white lysozyme. These NMR...