BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of membrane protein structure by rotational resonance NMR: bacteriorhod

Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin.

Related Articles Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin.

Science. 1991 Feb 15;251(4995):783-6

Authors: Creuzet F, McDermott A, Gebhard R, van der Hoef K, Spijker-Assink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG

Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, delta, is driven by magic angle spinning at a speed omega r that matches the rotational resonance condition delta = n omega r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (A)] and inconsistent with that for a 6-s-cis configuration (3.1 A). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.

PMID: 1990439 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc. 2005 Sep 21;127(37):12965-74 Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR structure determination of a membrane protein with two transmembrane helices in m
NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Related Articles NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry. 2005 Apr 5;44(13):5196-206 Authors: Howell SC, Mesleh MF, Opella SJ The three-dimensional backbone structure of a membrane protein with two transmembrane helices in micelles was determined using solution NMR methods that...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Determination of protein rotational correlation time from NMR relaxation data at vari
Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. Related Articles Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. J Biomol NMR. 2004 Dec;30(4):431-42 Authors: Korchuganov DS, Gagnidze IE, Tkach EN, Schulga AA, Kirpichnikov MP, Arseniev AS An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Membrane protein structure determination using solid-state NMR.
Membrane protein structure determination using solid-state NMR. Related Articles Membrane protein structure determination using solid-state NMR. Methods Mol Biol. 2004;278:403-73 Authors: Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Simultaneous assignment and structure determination of a membrane protein from NMR or
Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci. 2003 Mar;12(3):403-11 Authors: Marassi FM, Opella SJ A solid-state NMR approach for simultaneous resonance assignment and three-dimensional structure determination of a membrane protein in lipid bilayers is described. The approach is based on the scattering, hence the descriptor "shotgun," of (15)N-labeled amino...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Membrane protein structure determination by solid state NMR.
Membrane protein structure determination by solid state NMR. Related Articles Membrane protein structure determination by solid state NMR. Nat Prod Rep. 1999 Aug;16(4):419-23 Authors: Watts A, Burnett IJ, Glaubitz C, Gröbner G, Middleton DA, Spooner PJ, Watts JA, Williamson PT
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Determination of helix-helix interactions in membranes by rotational resonance NMR.
Determination of helix-helix interactions in membranes by rotational resonance NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Determination of helix-helix interactions in membranes by rotational resonance NMR. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):488-91 Authors: Smith SO, Bormann BJ Dimerization of human glycophorin A in erythrocyte membranes is mediated by specific interactions within the helical transmembrane domain of the protein. Rotational...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Rotational resonance NMR study of the active site structure in bacteriorhodopsin: con
Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Related Articles Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry. 1992 Sep 1;31(34):7931-8 Authors: Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:06 PM.


Map