Related ArticlesDetermination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin.
Science. 1991 Feb 15;251(4995):783-6
Authors: Creuzet F, McDermott A, Gebhard R, van der Hoef K, Spijker-Assink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG
Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, delta, is driven by magic angle spinning at a speed omega r that matches the rotational resonance condition delta = n omega r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (A)] and inconsistent with that for a 6-s-cis configuration (3.1 A). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
J Am Chem Soc. 2005 Sep 21;127(37):12965-74
Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M
It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] NMR structure determination of a membrane protein with two transmembrane helices in m
NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system.
Related Articles NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system.
Biochemistry. 2005 Apr 5;44(13):5196-206
Authors: Howell SC, Mesleh MF, Opella SJ
The three-dimensional backbone structure of a membrane protein with two transmembrane helices in micelles was determined using solution NMR methods that...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Determination of protein rotational correlation time from NMR relaxation data at vari
Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities.
Related Articles Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities.
J Biomol NMR. 2004 Dec;30(4):431-42
Authors: Korchuganov DS, Gagnidze IE, Tkach EN, Schulga AA, Kirpichnikov MP, Arseniev AS
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Membrane protein structure determination using solid-state NMR.
Membrane protein structure determination using solid-state NMR.
Related Articles Membrane protein structure determination using solid-state NMR.
Methods Mol Biol. 2004;278:403-73
Authors: Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X
Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Simultaneous assignment and structure determination of a membrane protein from NMR or
Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints.
Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints.
Protein Sci. 2003 Mar;12(3):403-11
Authors: Marassi FM, Opella SJ
A solid-state NMR approach for simultaneous resonance assignment and three-dimensional structure determination of a membrane protein in lipid bilayers is described. The approach is based on the scattering, hence the descriptor "shotgun," of (15)N-labeled amino...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Membrane protein structure determination by solid state NMR.
Membrane protein structure determination by solid state NMR.
Related Articles Membrane protein structure determination by solid state NMR.
Nat Prod Rep. 1999 Aug;16(4):419-23
Authors: Watts A, Burnett IJ, Glaubitz C, Gröbner G, Middleton DA, Spooner PJ, Watts JA, Williamson PT
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Determination of helix-helix interactions in membranes by rotational resonance NMR.
Determination of helix-helix interactions in membranes by rotational resonance NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Determination of helix-helix interactions in membranes by rotational resonance NMR.
Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):488-91
Authors: Smith SO, Bormann BJ
Dimerization of human glycophorin A in erythrocyte membranes is mediated by specific interactions within the helical transmembrane domain of the protein. Rotational...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Rotational resonance NMR study of the active site structure in bacteriorhodopsin: con
Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage.
Related Articles Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage.
Biochemistry. 1992 Sep 1;31(34):7931-8
Authors: Thompson LK, McDermott AE, Raap J, van der Wielen CM, Lugtenburg J, Herzfeld J, Griffin RG
Rotational resonance, a new solid-state NMR technique for determining internuclear distances, is used to measure a distance in the active site of...