BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-20-2023, 06:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determination of Ligand-Binding Affinity (Kd) Using Transverse Relaxation Rate (R2) in the Ligand-Observed 1H NMR Experiment and Applications to Fragment-Based Drug Discovery

Determination of Ligand-Binding Affinity (Kd) Using Transverse Relaxation Rate (R2) in the Ligand-Observed 1H NMR Experiment and Applications to Fragment-Based Drug Discovery

High hit rates from initial ligand-observed NMR screening can make it challenging to prioritize which hits to follow up, especially in cases where there are no available crystal structures of these hits bound to the target proteins or other strategies to provide affinity ranking. Here, we report a reproducible, accurate, and versatile quantitative ligand-observed NMR assay, which can determine K(d) values of fragments in the affinity range of low ?M to low mM using transverse relaxation rate...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] (19)F NMR viewed through two different lenses: ligand-observed and protein-observed (19)F NMR applications for fragment-based drug discovery
(19)F NMR viewed through two different lenses: ligand-observed and protein-observed (19)F NMR applications for fragment-based drug discovery ^(19)F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of ^(19)F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This...
nmrlearner Journal club 0 10-27-2021 10:50 PM
[NMR paper] Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR
Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR Structure-based drug development suffers from high attrition rates due to the poor activity of lead compounds in cellular and animal models caused by low cell penetrance, off-target binding or changes in the conformation of the target protein in the cellular environment. The latter two effects cause a change in the apparent binding affinity of the compound, which is indirectly assessed by cellular activity assays. To date, direct measurement of the intracellular binding affinity remains a... ...
nmrlearner Journal club 0 10-05-2021 05:24 PM
[NMR paper] Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders.
Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders. Angew Chem Int Ed Engl. 2017 Apr 07;: Authors: Wälti MA, Riek R, Orts J Abstract In early drug discovery approaches, screening hits are often weak affinity binders that are difficult to characterize in structural detail, particularly towards obtaining the 3D structure of...
nmrlearner Journal club 0 04-08-2017 10:57 AM
[NMR paper] Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.
Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data. J Med Chem. 2016 Apr 14;59(7):3303-10 Authors: Peng C, Frommlet A, Perez M, Cobas C, Blechschmidt A, Dominguez S, Lingel A Abstract NMR...
nmrlearner Journal club 0 09-28-2016 06:22 PM
[NMR paper] Protein-Observed Fluorine NMR is a Complementary Ligand Discovery Method to 1H CPMG Ligand-Observed NMR.
Protein-Observed Fluorine NMR is a Complementary Ligand Discovery Method to 1H CPMG Ligand-Observed NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Protein-Observed Fluorine NMR is a Complementary Ligand Discovery Method to 1H CPMG Ligand-Observed NMR. ACS Chem Biol. 2016 Sep 14; Authors: Urick AK, Calle Jiménez LP, Espinosa JF, Hu H, Pomerantz WC Abstract To evaluate its potential as a ligand discovery tool, we compare a newly developed...
nmrlearner Journal club 0 09-22-2016 06:31 AM
[NMR paper] Applications of (19)F-NMR in Fragment-Based Drug Discovery.
Applications of (19)F-NMR in Fragment-Based Drug Discovery. Related Articles Applications of (19)F-NMR in Fragment-Based Drug Discovery. Molecules. 2016;21(7) Authors: Norton RS, Leung EW, Chandrashekaran IR, MacRaild CA Abstract (19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the...
nmrlearner Journal club 0 07-22-2016 01:34 AM
[NMR paper] HTS by NMR of Combinatorial Libraries: A Fragment-Based Approach to Ligand Discovery.
HTS by NMR of Combinatorial Libraries: A Fragment-Based Approach to Ligand Discovery. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles HTS by NMR of Combinatorial Libraries: A Fragment-Based Approach to Ligand Discovery. Chem Biol. 2013 Jan 24;20(1):19-33 Authors: Wu B, Zhang Z, Noberini R, Barile E, Giulianotti M, Pinilla C, Houghten RA, Pasquale EB, Pellecchia M Abstract Fragment-based ligand design (FBLD) approaches have become more widely used in drug discovery...
nmrlearner Journal club 0 02-03-2013 10:19 AM
[NMR paper] Determination of protein-ligand binding affinity by NMR: observations from serum albu
Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Related Articles Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Magn Reson Chem. 2005 Jun;43(6):463-70 Authors: Fielding L, Rutherford S, Fletcher D The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the...
nmrlearner Journal club 0 11-25-2010 08:21 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:17 PM.


Map